Near threshold photoproduction of $\eta$-mesons from the deuteron

Krusche, B. ; Ahrens, J. ; Annand, J.R.M. ; et al.
Phys.Lett.B 358 (1995) 40-46, 1995.
Inspire Record 406946 DOI 10.17182/hepdata.28490

The first measurement of incoherent η-photoproduction from the deuteron in the threshold region is reported. The experiment was carried out at the MAMI accelerator with the TAPS spectrometer. Total and differential inclusive cross sections have been obtained between 627 and 790 MeV. It is found that the reaction is completely dominated by the incoherent part. An upper limit for coherent η-photoproduction on the deuteron is deduced, which is substantially lower than the result from an earlier measurement. The incoherent cross section is reproduced in a participant-spectator approach under the assumption of an energy-independent ratio between the neutron and proton cross sections. Best agreement is found for the ratio σ n σ p ≈ 2 3 . The implications for the isospin components of the electromagnetic excitation of the S 11 (1535) resonance are discussed.

1 data table

The helicity amplitudes A(1/2) = <S11|j(em)|nucleon> are measured.


Precise Measurement of Parity Nonconserving Optical Rotation in Atomic Thallium

Edwards, N.H. ; Phipp, S.J. ; Baird, P.E.G. ; et al.
Phys.Rev.Lett. 74 (1995) 2654-2657, 1995.
Inspire Record 943148 DOI 10.17182/hepdata.19660

We report a new measurement of parity nonconserving (PNC) optical rotation on the 6p1/2- 6p3/2 transition in atomic thallium near 1283 nm. The result expressed in terms of the quantity R=Im{E1PNC/M1} is −(15.68±0.45)×10−8, and is consistent with current calculations based on the standard model. In addition, limits have been set on the much smaller nuclear spin-dependent rotation amplitude at RS=(0.04±0.20)×10−8; this is consistent with theoretical estimates which include a nuclear anapole contribution.

1 data table

Spin of the Tl nucleus is 1/2.


Precise test of electroweak theory from a new measurement of parity nonconservation in atomic thallium

Vetter, P.A. ; Meekhof, D.M. ; Majumder, P.K. ; et al.
Phys.Rev.Lett. 74 (1995) 2658-2661, 1995.
Inspire Record 405007 DOI 10.17182/hepdata.19649

We report a new measurement of parity nonconserving (PNC) optical rotation near the 1.28 μm, 6P1/2→6P3/2 magnetic dipole transition in thallium. We find the ratio of the PNC E1 amplitude to the M1 amplitude to be R=(−14.68±0.17)×10−8, which within the present uncertainty of atomic theory yields the thallium weak charge Qw(T205l)=−114.2±3.8 and the electroweak parameter S=−2.2±3.0. Separate measurements on the F=1 and F=0 ground-state hyperfine components of the transition yield R1−R0=(0.15±0.20)×10−8, which limits the size of nuclear spin-dependent PNC in Tl.

1 data table

Spin of the Tl nucleus is 1/2.


Test of low-energy theorems for p(gamma(pol.),pi0)p in the threshold region.

Schmidt, A. ; Achenbach, P. ; Ahrens, J. ; et al.
Phys.Rev.Lett. 87 (2001) 232501, 2001.
Inspire Record 556802 DOI 10.17182/hepdata.31362

The photon asymmetry in the reaction p(\vec{\gamma},\pi^{0})p close to threshold has been measured for the first time with the photon spectrometer TAPS using linearly polarized photons from the tagged-photon facility at the Mainz Microtron MAMI. The total and differential cross sections were also measured simultaneously with the photon asymmetry. This allowed determination of the S-wave and all three P-wave amplitudes. The low-energy theorems based on the parameter-free third-order calculations of heavy-baryon chiral perturbation theory for P1 and P2 agree with the experimental values.

1 data table

Polarized photon beam.


Preliminary Observation of Parity Nonconservation in Atomic Thallium

Conti, R. ; Bucksbaum, P. ; Chu, S. ; et al.
Phys.Rev.Lett. 42 (1979) 343-346, 1979.
Inspire Record 136903 DOI 10.17182/hepdata.20786

Parity nonconservation is observed in the 6P122−7P122 transition in thallium. Absorption of circularly polarized 293-nm photons by 6P122 atoms in an E field results in polarization of the 7P122 state through interference of Stark E1 amplitudes with M1 and parity-nonconserving E1 amplitudes M and Ep. Detection of this polarization yields the circular dichroism δ=+(5.2±2.4)×10−3, which agrees in sign and magnitude with theoretical estimates based on the Weinberg-Salam model.

1 data table

Used 99.999% pure thallium metal with natural isotopic abundances (29.5% Tl203, 70.5% Tl205). SIG(C+), SIG(C-) are the cross sections for absorption of 293-nm photons, with +,- helicity, respectively. Spin of the Tl nucleus is 1/2. Statistical errors only.


PARITY NONCONSERVATION IN ATOMIC THALLIUM

Drell, Persis S. ; Commins, E.D. ;
Phys.Rev.Lett. 53 (1984) 968-971, 1984.
Inspire Record 208341 DOI 10.17182/hepdata.20404

We present new measurements of parity conservation in the 293-nm transition in atomic Tl81205. Linearly polarized 293-nm photons, polarization ε^, are absorbed by 6P122 atoms in crossed electric and magnetic fields. The transition probability for each Zeeman component contains a term proportional to ε^·B→ε^·E→×B→ arising from interference between the Stark E1 amplitude βE and the parity-nonconserving E1 amplitude Ep. Our result, [ImEpβ]expt=−1.73±0.33 mV/cm, is compared with estimates based on the standard electroweak model.

1 data table

Spin of the Tl nucleus is 1/2.


Atomic Beam Measurement of Parity Nonconservation in Cesium

Gilbert, S.L. ; Wieman, Carl E. ;
Phys.Rev.A 34 (1986) 792-803, 1986.
Inspire Record 237319 DOI 10.17182/hepdata.26392

We present a new measurement of parity nonconservation in cesium. In this experiment, a laser excited the 6S→7S transition in an atomic beam in a region of static electric and magnetic fields. The quantity measured was the component of the transition rate arising from the interference between the parity nonconserving amplitude, scrEPNC, and the Stark amplitude, βE. Our results are ImscrEPNC/β=−1.65±0.13 mV/cm and C2p=-2±2, where C2p is the proton-axial-vector–electron-vector neutral-current coupling constant. These results are in agreement with previous less precise measurements in cesium and with the predictions of the electroweak standard model. We give a detailed discussion of the experiment with particular emphasis on the treatment and elimination of systematic errors. This experimental technique will allow future measurements of significantly higher precision.

3 data tables

Axis error includes +- 0.0/0.0 contribution (?////THE UNCERTAINTY IS DOMINATED BY THE PURELY STATISTICAL CONTRIBUTION).

Axis error includes +- 0.0/0.0 contribution (?////THE UNCERTAINTY IS DOMINATED BY THE PURELY STATISTICAL CONTRIBUTION).

Axis error includes +- 0.0/0.0 contribution (?////THE UNCERTAINTY IS DOMINATED BY THE PURELY STATISTICAL CONTRIBUTION).


NEW OBSERVATION OF A PARITY VIOLATION IN CESIUM

Bouchiat, M.A. ; Guena, J. ; Pottier, L. ; et al.
Phys.Lett.B 134 (1984) 463-468, 1984.
Inspire Record 200186 DOI 10.17182/hepdata.30610

The parity violation induced by weak neutral currents is measured in a ΔF =1 hyperfine component of the 6S–7S transition of the Cs atom. The measured value ( Im E PV 1 β ) = −1.78 ± 0.26 (statistical rms deviation) ±0.12 (systematic uncertainty) mV/cm, agrees with our previous measurement in a ΔF =0 component, and constitutes an important cross-check. Our result excludes a parity violation induced by a purely axial hadronic neutral current.

1 data table

(7s)2S1/2:F=3 --> (6s)2S1/2:F=4 transition.


Observation of a Parity Violation in Cesium

Bouchiat, M.A. ; Guena, J. ; Hunter, L. ; et al.
Phys.Lett.B 117 (1982) 358, 1982.
Inspire Record 180105 DOI 10.17182/hepdata.30837

We have measured a parity violation in the 6S–7S transition of Cs in an electric field. Our result is Im E 1 pv β = -1.34 ± 0.22 ( rms statistical deviation ) ± ∼0.11 ( systematic uncertainty ) mV cm; E 1 pv is the parity violating electric dipole amplitude, ß is the vector polarizability. This result is consistent with the Weinberg-Salam prediction.

1 data table

(7s)2S1/2:F=4 --> (6s)2S1/2:F=4 transition.


Search for Parity Nonconservation in Atomic Bismuth

Soreide, D.C. ; Roberts, D.E. ; Lindahl, E.G. ; et al.
Phys.Rev.Lett. 36 (1976) 352-355, 1976.
Inspire Record 112866 DOI 10.17182/hepdata.21089

In a search for optical rotation near the 8755-Å magnetic-dipole absorption line in atomic Bi, our first results set an upper limit F<10−6 on a parity nonconserving amplitude associated with the line. This limit improves upon earlier parity tests in atoms by three orders of magnitude. Further improvement of at least another order of magnitude appears possible by this method which should then provide an exacting test of parity conservation in the neutral weak-current interaction in atoms.

1 data table

No description provided.