Measurement of $t$-channel production of single top quarks and antiquarks in $pp$ collisions at 13 TeV using the full ATLAS Run 2 data sample

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
CERN-EP-2023-289, 2024.
Inspire Record 2764820 DOI 10.17182/hepdata.150693

The production of single top quarks and top antiquarks via the $t$-channel exchange of a virtual $W$ boson is measured in proton-proton collisions at a centre-of-mass energy of 13 TeV at the LHC using $140\,\mathrm{fb^{-1}}$ of ATLAS data. The total cross-sections are determined to be $\sigma(tq)=137^{+8}_{-8}\,\mathrm{pb}$ and $\sigma(\bar{t}q)=84^{+6}_{-5}\,\mathrm{pb}$ for top-quark and top-antiquark production, respectively. The combined cross-section is found to be $\sigma(tq+\bar{t}q)=221^{+13}_{-13}\,\mathrm{pb}$ and the cross-section ratio is $R_{t}=\sigma(tq)/\sigma(\bar{t}q)=1.636^{+0.036}_{-0.034}$. The predictions at next-to-next-to-leading-order in quantum chromodynamics are in good agreement with these measurements. The predicted value of $R_{t}$ using different sets of parton distribution functions is compared with the measured value, demonstrating the potential to further constrain the functions when using this result in global fits. The measured cross-sections are interpreted in an effective field theory approach, setting limits at the 95% confidence level on the strength of a four-quark operator and an operator coupling the third quark generation to the Higgs boson doublet: $-0.37 < C_{Qq}^{3,1}/\Lambda^2 < 0.06$ and $-0.87 < C_{\phi Q}^{3}/\Lambda^2 < 1.42$. The constraint $|V_{tb}|>0.95$ at the 95% confidence level is derived from the measured value of $\sigma(tq+\bar{t}q)$. In a more general approach, pairs of CKM matrix elements involving top quarks are simultaneously constrained, leading to confidence contours in the corresponding two-dimensional parameter spaces.

21 data tables

The 17 variables used for the training of the NN ordered by their discriminating power. The jet that is not \(b\)-tagged is referred to as the untagged jet. The charged lepton is denoted \(\ell\). The sphericity tensor \(S^{\alpha\beta}\) used to define the sphericity \(S\) is formed with the three-momenta \(\vec{p}_i\) of the reconstructed objects, namely the jets, the charged lepton and the reconstructed neutrino. The tensor is given by \(S^{\alpha\beta}=\frac{\sum_i p_i^\alpha p_i^\beta}{\sum_i |\vec{p}_i|^2}\) where \(\alpha\) and \(\beta\) correspond to the spatial components $x$, $y$ and $z$.

The impact of different groups of systematic uncertainties on the \(\sigma(tq)\) , \(\sigma(\bar t q)\), \(\sigma(tq + \bar t q)\) and \(R_t\), given in %.

The impact of the eight most important systematic uncertainties on the \(\sigma(tq)\) , \(\sigma(\bar t q)\) and \(\sigma(tq + \bar t q)\), given in %. The sequence of the uncertainties is given by the impact on \(\sigma(tq + \bar t q)\)

More…

Version 2
Search for long-lived, massive particles in events with displaced vertices and multiple jets in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 2306 (2023) 200, 2023.
Inspire Record 2628398 DOI 10.17182/hepdata.137762

A search for long-lived particles decaying into hadrons is presented. The analysis uses 139 fb$^{-1}$ of $pp$ collision data collected at $\sqrt{s} = 13$ TeV by the ATLAS detector at the LHC using events that contain multiple energetic jets and a displaced vertex. The search employs dedicated reconstruction techniques that significantly increase the sensitivity to long-lived particles decaying in the ATLAS inner detector. Background estimates for Standard Model processes and instrumental effects are extracted from data. The observed event yields are compatible with those expected from background processes. The results are used to set limits at 95% confidence level on model-independent cross sections for processes beyond the Standard Model, and on scenarios with pair-production of supersymmetric particles with long-lived electroweakinos that decay via a small $R$-parity-violating coupling. The pair-production of electroweakinos with masses below 1.5 TeV is excluded for mean proper lifetimes in the range from 0.03 ns to 1 ns. When produced in the decay of $m(\tilde{g})=2.4$ TeV gluinos, electroweakinos with $m(\tilde\chi^0_1)=1.5$ TeV are excluded with lifetimes in the range of 0.02 ns to 4 ns.

96 data tables

<b>Tables of Yields:</b> <a href="?table=validation_regions_yields_highpt_SR">Validation Regions Summary Yields, High-pT jet selections</a> <a href="?table=validation_regions_yields_trackless_SR">Validiation Regions Summary Yields, Trackless jet selections</a> <a href="?table=yields_highpt_SR_observed">Signal region (and sidebands) observed yields, High-pT jet selections</a> <a href="?table=yields_highpt_SR_expected">Signal region (and sidebands) expected yields, High-pT jet selections</a> <a href="?table=yields_trackless_SR_observed">Signal region (and sidebands) observed yields, Trackless jet selections</a> <a href="?table=yields_trackless_SR_expected">Signal region (and sidebands) expected yields, Trackless jet selections</a> <b>Exclusion Contours:</b> <a href="?table=excl_ewk_exp_nominal">EWK RPV signal; expected, nominal</a> <a href="?table=excl_ewk_exp_up">EWK RPV signal; expected, $+1\sigma$</a> <a href="?table=excl_ewk_exp_down">EWK RPV signal; expected, $-1\sigma$</a> <a href="?table=excl_ewk_obs_nominal">EWK RPV signal; observed, nominal</a> <a href="?table=excl_ewk_obs_up">EWK RPV signal; observed, $+1\sigma$</a> <a href="?table=excl_ewk_obs_down">EWK RPV signal; observed, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_exp_nominal">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; expected, nominal</a> <a href="?table=excl_strong_mgluino_2400_GeV_exp_up">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_exp_down">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_obs_nominal">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; observed, nominal</a> <a href="?table=excl_strong_mgluino_2400_GeV_obs_up">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_obs_down">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; observed, $-1\sigma$</a> <a href="?table=excl_xsec_ewk">EWK RPV signal; cross-section limits for fixed lifetime values.</a> <a href="?table=excl_xsec_strong_mgluino_2400">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; cross-section limits for fixed lifetime values.</a> <a href="?table=excl_strong_mgluino_2000_GeV_exp_nominal">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; expected, nominal</a> <a href="?table=excl_strong_mgluino_2000_GeV_exp_up">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2000_GeV_exp_down">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2000_GeV_obs_nominal">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; observed, nominal</a> <a href="?table=excl_strong_mgluino_2000_GeV_obs_up">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2000_GeV_obs_down">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_exp_nominal">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; expected, nominal</a> <a href="?table=excl_strong_mgluino_2200_GeV_exp_up">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_exp_down">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_obs_nominal">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; observed, nominal</a> <a href="?table=excl_strong_mgluino_2200_GeV_obs_up">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_obs_down">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_exp_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; expected, nominal</a> <a href="?table=excl_strong_mchi0_50_GeV_exp_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_exp_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_obs_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; observed, nominal</a> <a href="?table=excl_strong_mchi0_50_GeV_obs_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_obs_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_exp_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; expected, nominal</a> <a href="?table=excl_strong_mchi0_450_GeV_exp_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_exp_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_obs_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; observed, nominal</a> <a href="?table=excl_strong_mchi0_450_GeV_obs_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_obs_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_exp_nominal">Strong RPV signal, $\tau$=0.01 ns; expected, nominal</a> <a href="?table=excl_strong_tau_0p01_ns_exp_up">Strong RPV signal, $\tau$=0.01 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_exp_down">Strong RPV signal, $\tau$=0.01 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_obs_nominal">Strong RPV signal, $\tau$=0.01 ns; observed, nominal</a> <a href="?table=excl_strong_tau_0p01_ns_obs_up">Strong RPV signal, $\tau$=0.01 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_obs_down">Strong RPV signal, $\tau$=0.01 ns; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_exp_nominal">Strong RPV signal, $\tau$=0.10 ns; expected, nominal</a> <a href="?table=excl_strong_tau_0p1_ns_exp_up">Strong RPV signal, $\tau$=0.10 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_exp_down">Strong RPV signal, $\tau$=0.10 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_obs_nominal">Strong RPV signal, $\tau$=0.10 ns; observed, nominal</a> <a href="?table=excl_strong_tau_0p1_ns_obs_up">Strong RPV signal, $\tau$=0.10 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_obs_down">Strong RPV signal, $\tau$=0.10 ns; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_exp_nominal">Strong RPV signal, $\tau$=1.00 ns; expected, nominal</a> <a href="?table=excl_strong_tau_1_ns_exp_up">Strong RPV signal, $\tau$=1.00 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_exp_down">Strong RPV signal, $\tau$=1.00 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_obs_nominal">Strong RPV signal, $\tau$=1.00 ns; observed, nominal</a> <a href="?table=excl_strong_tau_1_ns_obs_up">Strong RPV signal, $\tau$=1.00 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_obs_down">Strong RPV signal, $\tau$=1.00 ns; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_exp_nominal">Strong RPV signal, $\tau$=10.00 ns; expected, nominal</a> <a href="?table=excl_strong_tau_10_ns_exp_up">Strong RPV signal, $\tau$=10.00 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_exp_down">Strong RPV signal, $\tau$=10.00 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_obs_nominal">Strong RPV signal, $\tau$=10.00 ns; observed, nominal</a> <a href="?table=excl_strong_tau_10_ns_obs_up">Strong RPV signal, $\tau$=10.00 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_obs_down">Strong RPV signal, $\tau$=10.00 ns; observed, $-1\sigma$</a> <a href="?table=excl_xsec_strong_chi0_1250">Strong RPV signal, m($\tilde{\chi}^0_1$)=1.25 TeV; cross-section limits for fixed lifetime values.</a> <br/><b>Reinterpretation Material:</b> See the attached resource (purple button on the left) or directly <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2016-08/hepdata_info.pdf">this link</a> for information about acceptance definition and about how to use the efficiency histograms below. SLHA files are also available in the reource page of this HEPData record. <a href="?table=acceptance_highpt_strong"> Acceptance cutflow, High-pT SR, Strong production.</a> <a href="?table=acceptance_trackless_ewk"> Acceptance cutflow, Trackless SR, EWK production.</a> <a href="?table=acceptance_trackless_ewk_hf"> Acceptance cutflow, Trackless SR, EWK production with heavy-flavor.</a> <a href="?table=acceptance_highpt_ewk_hf"> Acceptance cutflow, Trackless SR, EWK production with heavy-flavor.</a> <a href="?table=event_efficiency_HighPt_R_1150_mm">Reinterpretation Material: Event-level Efficiency for HighPt SR selections, R &lt; 1150 mm</a> <a href="?table=event_efficiency_HighPt_R_1150_3870_mm">Reinterpretation Material: Event-level Efficiency for HighPt SR selections, R [1150, 3870] mm</a> <a href="?table=event_efficiency_HighPt_R_3870_mm">Reinterpretation Material: Event-level Efficiency for HighPt SR selections, R &gt; 3870 mm</a> <a href="?table=event_efficiency_Trackless_R_1150_mm">Reinterpretation Material: Event-level Efficiency for Trackless SR selections, R &lt; 1150 mm</a> <a href="?table=event_efficiency_Trackless_R_1150_3870_mm">Reinterpretation Material: Event-level Efficiency for Trackless SR selections, R [1150, 3870] mm</a> <a href="?table=event_efficiency_Trackless_R_3870_mm">Reinterpretation Material: Event-level Efficiency for Trackless SR selections, R &gt; 3870 mm</a> <a href="?table=vertex_efficiency_R_22_mm">Reinterpretation Material: Vertex-level Efficiency for R &lt; 22 mm</a> <a href="?table=vertex_efficiency_R_22_25_mm">Reinterpretation Material: Vertex-level Efficiency for R [22, 25] mm</a> <a href="?table=vertex_efficiency_R_25_29_mm">Reinterpretation Material: Vertex-level Efficiency for R [25, 29] mm</a> <a href="?table=vertex_efficiency_R_29_38_mm">Reinterpretation Material: Vertex-level Efficiency for R [29, 38] mm</a> <a href="?table=vertex_efficiency_R_38_46_mm">Reinterpretation Material: Vertex-level Efficiency for R [38, 46] mm</a> <a href="?table=vertex_efficiency_R_46_73_mm">Reinterpretation Material: Vertex-level Efficiency for R [46, 73] mm</a> <a href="?table=vertex_efficiency_R_73_84_mm">Reinterpretation Material: Vertex-level Efficiency for R [73, 84] mm</a> <a href="?table=vertex_efficiency_R_84_111_mm">Reinterpretation Material: Vertex-level Efficiency for R [84, 111] mm</a> <a href="?table=vertex_efficiency_R_111_120_mm">Reinterpretation Material: Vertex-level Efficiency for R [111, 120] mm</a> <a href="?table=vertex_efficiency_R_120_145_mm">Reinterpretation Material: Vertex-level Efficiency for R [120, 145] mm</a> <a href="?table=vertex_efficiency_R_145_180_mm">Reinterpretation Material: Vertex-level Efficiency for R [145, 180] mm</a> <a href="?table=vertex_efficiency_R_180_300_mm">Reinterpretation Material: Vertex-level Efficiency for R [180, 300] mm</a> <br/><b>Cutflow Tables:</b> <a href="?table=cutflow_highpt_strong"> Cutflow (Acceptance x Efficiency), High-pT SR, Strong production.</a> <a href="?table=cutflow_trackless_ewk"> Cutflow (Acceptance x Efficiency), Trackless SR, EWK production.</a> <a href="?table=cutflow_trackless_ewk_hf"> Cutflow (Acceptance x Efficiency), Trackless SR, EWK production with heavy-flavor quarks.</a> <a href="?table=cutflow_highpt_ewk_hf"> Cutflow (Acceptance x Efficiency), High-pT SR, EWK production with heavy-flavor quarks.</a>

Validation of background estimate in validation regions for the High-pT jet selections

Validation of background estimate in validation regions for the Trackless jet selections

More…

Search for pair-produced higgsinos decaying via Higgs or $Z$ bosons to final states containing a pair of photons and a pair of $b$-jets with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
CERN-EP-2023-039, 2024.
Inspire Record 2773395 DOI 10.17182/hepdata.144072

A search is presented for the pair production of higgsinos $\tilde{\chi}$ in gauge-mediated supersymmetry models, where the lightest neutralinos $\tilde{\chi}_1^0$ decay into a light gravitino $\tilde{G}$ either via a Higgs $h$ or $Z$ boson. The search is performed with the ATLAS detector at the Large Hadron Collider using 139 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$ = 13 TeV. It targets final states in which a Higgs boson decays into a photon pair, while the other Higgs or $Z$ boson decays into a $b\bar{b}$ pair, with missing transverse momentum associated with the two gravitinos. Search regions dependent on the amount of missing transverse momentum are defined by the requirements that the diphoton mass should be consistent with the mass of the Higgs boson, and the $b\bar{b}$ mass with the mass of the Higgs or $Z$ boson. The main backgrounds are estimated with data-driven methods using the sidebands of the diphoton mass distribution. No excesses beyond Standard Model expectations are observed and higgsinos with masses up to 320 GeV are excluded, assuming a branching fraction of 100% for $\tilde{\chi}_1^0\rightarrow h\tilde{G}$. This analysis excludes higgsinos with masses of 130 GeV for branching fractions to $h\tilde{G}$ as low as 36%, thus providing complementarity to previous ATLAS searches in final states with multiple leptons or multiple $b$-jets, targeting different decays of the electroweak bosons.

25 data tables

<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <b>Histograms:</b><ul> <li><a href=?table=Distribution1>Figure 3a: $m_{\gamma\gamma}$ Distribution in VR1</a> <li><a href=?table=Distribution2>Figure 3b: $E_{\mathrm{T}}^{\mathrm{miss}}$ Distribution in VR1</a> <li><a href=?table=Distribution3>Figure 3c: $m_{\gamma\gamma}$ Distribution in VR2</a> <li><a href=?table=Distribution4>Figure 3d: $E_{\mathrm{T}}^{\mathrm{miss}}$ Distribution in VR2</a> <li><a href=?table=Distribution5>Figure 4a: N-1 $m_{\gamma\gamma}$ Distribution for SR1h</a> <li><a href=?table=Distribution6>Figure 4b: N-1 $m_{\gamma\gamma}$ Distribution for SR1Z</a> <li><a href=?table=Distribution7>Figure 4c: N-1 $m_{\gamma\gamma}$ Distribution for SR2</a> <li><a href=?table=Distribution8>Auxiliary Figure 1: Signal and Validation Region Yields</a> </ul> <b>Tables:</b><ul> <li><a href=?table=YieldsTable1>Table 3: Signal Region Yields & Model-independent Limits</a> <li><a href=?table=Cutflow1>Auxiliary Table 1: Benchmark Signal Cutflows</a> </ul> <b>Cross section limits:</b><ul> <li><a href=?table=X-sectionU.L.1>Figure 5: 1D Cross-section Limits</a> <li><a href=?table=X-sectionU.L.2>Auxiliary Figure 3: 2D Cross-section Limits</a> </ul> <b>2D CL limits:</b><ul> <li><a href=?table=Exclusioncontour1>Figure 6: Expected Limit on $\mathrm{BF}(\tilde{\chi}_1^0\rightarrow h\tilde{G})$</a> <li><a href=?table=Exclusioncontour2>Figure 6: $+1\sigma$ Variation for Expected Limit on $\mathrm{BF}(\tilde{\chi}_1^0\rightarrow h\tilde{G})$</a> <li><a href=?table=Exclusioncontour3>Figure 6: $-1\sigma$ Variation for Expected Limit on $\mathrm{BF}(\tilde{\chi}_1^0\rightarrow h\tilde{G})$</a> <li><a href=?table=Exclusioncontour4>Figure 6: Observed Limit on $\mathrm{BF}(\tilde{\chi}_1^0\rightarrow h\tilde{G})$</a> <li><a href=?table=Exclusioncontour5>Figure 6: $+1\sigma$ Variation for Observed Limit on $\mathrm{BF}(\tilde{\chi}_1^0\rightarrow h\tilde{G})$</a> <li><a href=?table=Exclusioncontour6>Figure 6: $-1\sigma$ Variation for Observed Limit on $\mathrm{BF}(\tilde{\chi}_1^0\rightarrow h\tilde{G})$</a> </ul> <b>2D Acceptance and Efficiency maps:</b><ul> <li><a href=?table=Acceptance1>Auxiliary Figure 4a: Acceptances SR1h</a> <li><a href=?table=Acceptance2>Auxiliary Figure 4b: Acceptances SR1Z</a> <li><a href=?table=Acceptance3>Auxiliary Figure 4c: Acceptances SR2</a> <li><a href=?table=Efficiency1>Auxiliary Figure 5a: Efficiencies SR1h</a> <li><a href=?table=Efficiency2>Auxiliary Figure 5b: Efficiencies SR1Z</a> <li><a href=?table=Efficiency3>Auxiliary Figure 5c: Efficiencies SR2</a> </ul>

Distribution of the diphoton invariant mass in validation region VR1. The solid histograms are stacked to show the SM expectations after the 2&times;2D background estimation technique is applied. Background and signal predictions are normalised to the luminosity. The background category "h (other)" includes events originating from VBF, Vh, ggF, thq, thW and bb&#772;h, all subdominant in this signature. Statistical and systematic uncertainties are indicated by the shaded area. The lower panel of each plot shows the ratio of the data to the SM prediction for the respective bin. The first and last bins include the underflows and overflows respectively.

Distribution of the missing transverse momentum in validation region VR1. The solid histograms are stacked to show the SM expectations after the 2&times;2D background estimation technique is applied. Background and signal predictions are normalised to the luminosity. The background category "h (other)" includes events originating from VBF, Vh, ggF, thq, thW and bb&#772;h, all subdominant in this signature. Statistical and systematic uncertainties are indicated by the shaded area. The lower panel of each plot shows the ratio of the data to the SM prediction for the respective bin. The first and last bins include the underflows and overflows respectively.

More…

Search for the decay of the Higgs boson to a $Z$ boson and a light pseudoscalar particle decaying to two photons

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Phys.Lett.B 850 (2024) 138536, 2024.
Inspire Record 2729877 DOI 10.17182/hepdata.145855

A search for the decay of the Higgs boson to a $Z$ boson and a light, pseudoscalar particle, $a$, decaying respectively to two leptons and to two photons is reported. The search uses the full LHC Run 2 proton-proton collision data at $\sqrt{s}=13$ TeV, corresponding to 139 fb$^{-1}$ collected by the ATLAS detector. This is one of the first searches for this specific decay mode of the Higgs boson, and it probes unexplored parameter space in models with axion-like particles (ALPs) and extended scalar sectors. The mass of the $a$ particle is assumed to be in the range 0.1-33 GeV. The data are analysed in two categories: a merged category where the photons from the $a$ decay are reconstructed in the ATLAS calorimeter as a single cluster, and a resolved category in which two separate photons are detected. The main background processes are from Standard Model $Z$ boson production in association with photons or jets. The data are in agreement with the background predictions, and upper limits on the branching ratio of the Higgs boson decay to $Za$ times the branching ratio $a\to\gamma\gamma$ are derived at the 95% confidence level and they range from 0.08% to 2% depending on the mass of the $a$ particle. The results are also interpreted in the context of ALP models.

5 data tables

Post-fit distribution for $m_{\gamma\gamma}$ for the resolved category in number of events per 0.2 GeV for data. The figure uses $pp$ collision data at $\sqrt{s}=13$ TeV corresponding to 139 fb$^{-1}$.

Post-fit distribution for $m_{\gamma\gamma}$ for the resolved category in number of events per 0.2 GeV for a signal distribution for $m_a = 9$ GeV, and the signal plus background fit with its background component. The branching ratio of the Higgs boson decay to $Za$ times the branching ratio $a $->$ \gamma \gamma$ is assumed to be 50%. The figure uses $pp$ collision data at $\sqrt{s}=13$ TeV corresponding to 139 fb$^{-1}$.

Post-fit final discriminating variable $\Delta R_{Z\gamma}$ in the signal region of the merged category. Signal distributions for $m_a$ values used in this category are overlayed for comparison, assuming a branching ratio of the Higgs boson decay to $Za$ times the branching ratio $a $->$ \gamma \gamma$ of 100%. The signal yields have been multiplied by 10 for better visibility. The figure uses $pp$ collision data at $\sqrt{s}=13$ TeV corresponding to 139 fb$^{-1}$.

More…

Search for new physics in the $\tau$ lepton plus missing transverse momentum final state in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, A. ; Adam, W. ; Andrejkovic, J.W. ; et al.
JHEP 09 (2023) 051, 2023.
Inspire Record 2626189 DOI 10.17182/hepdata.135472

A search for physics beyond the standard model (SM) in the final state with a hadronically decaying tau lepton and a neutrino is presented. This analysis is based on data recorded by the CMS experiment from proton-proton collisions at a center-of-mass energy of 13 TeV at the LHC, corresponding to a total integrated luminosity of 138 fb$^{=1}$. The transverse mass spectrum is analyzed for the presence of new physics. No significant deviation from the SM prediction is observed. Limits are set on the production cross section of a W' boson decaying into a tau lepton and a neutrino. Lower limits are set on the mass of the sequential SM-like heavy charged vector boson and the mass of a quantum black hole. Upper limits are placed on the couplings of a new boson to the SM fermions. Constraints are put on a nonuniversal gauge interaction model and an effective field theory model. For the first time, upper limits on the cross section of $t$-channel leptoquark (LQ) exchange are presented. These limits are translated into exclusion limits on the LQ mass and on its coupling in the $t$-channel. The sensitivity of this analysis extends into the parameter space of LQ models that attempt to explain the anomalies observed in B meson decays. The limits presented for the various interpretations are the most stringent to date. Additionally, a model-independent limit is provided.

15 data tables

The transverse mass distribution of $ au$ leptons and missing transverse momentum observed in the Run-2 data (black dots with statistical uncertainty) as well as the expectation from SM processes (stacked histograms). Different signal hypotheses normalized to 10 fb$^{-1}$ are illustrated as dashed lines for exemplary SSM W$\prime$ boson, QBH and EFT signal hypotheses. The ratios of the background-subtracted data yields to the expected background yields are presented in the lower panel. The combined statistical and systematic uncertainties in the background are represented by the grey shaded band in the ratio panel.

Bayesian upper exclusion limits at 95% CL on the product of the cross section and branching fraction of a W$\prime$ boson decaying to a $\tau$ lepton and a neutrino in the SSM model. For this model, W$\prime$ boson masses of up to 4.8 TeV can be excluded. The limit is given by the intersection of the observed (solid) limit and the theoretical cross section (blue dotted curve). The 68 and 95% quantiles of the limits are represented by the green and yellow bands, respectively. The $\sigma \mathcal{B}$ for an SSM W' boson, along with its associated uncertainty, calculated at NNLO precision in QCD is shown.

Bayesian 95% CL model-independent upper limit on the product of signal cross sections and branching fraction for the $\tau+\nu$ decay for a back-to-back $\tau$ lepton plus $p_{T}^{miss}$ topology. To calculate this limit, all events for signal, background, and data are summed starting from a minimum $m_{T}$ threshold and then divided by the total number of events. No assumption on signal shape is included in this limit. The expected (dashed line) and observed (solid line) limits are shown as well as the 68% and 95% CL uncertainty bands (green and yellow, respectively).

More…

Search for the decay of the Higgs boson to a pair of light pseudoscalar bosons in the final state with four bottom quarks in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-HIG-18-026, 2024.
Inspire Record 2769284 DOI 10.17182/hepdata.147309

A search is presented for the decay of the 125 GeV Higgs boson (H) to a pair of new light pseudoscalar bosons (a), followed by the prompt decay of each a boson to a bottom quark-antiquark pair, H $\to$ aa $\to$$\mathrm{b\bar{b}b\bar{b}}$. The analysis is performed using a data sample of proton-proton collisions collected with the CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. To reduce the background from standard model processes, the search requires the Higgs boson to be produced in association with a leptonically decaying W or Z boson. The analysis probes the production of new light bosons in a 15 $\lt$$m_\mathrm{a}$$\lt$ 60 GeV mass range. Assuming the standard model predictions for the Higgs boson production cross sections for pp $\to$ WH and ZH, model independent upper limits at 95% confidence level are derived for the branching fraction $\mathcal{B}$(H $\to$ aa $\to$ $\mathrm{b\bar{b}b\bar{b}}$). The combined WH and ZH observed upper limit on the branching fraction ranges from 1.10 for $m_\mathrm{a} =$ 20 GeV to 0.36 for $m_\mathrm{a} =$ 60 GeV, complementing other measurements in the $\mu\mu\tau\tau$, $\tau\tau\tau\tau$ and bb$\ell\ell$ ($\ell=$ $\mu$,$\tau$) channels.

6 data tables

Post-fit BDT distributions in the WH channel extracted with the ma = 60 GeV signal hypothesis. Signal regions for the 3b (upper) and 4b (lower) event categories are shown separately for the electron (left) and muon (right) channels. The dotted lines WH20 GeV, WH60 GeV, illustrate the shapes of the signal template normalised to the SM cross section times a branching fraction B(H → aa → bbbb) = 1 and scaled by the factors indicated in the figure. The horizontal error bars indicate the bin width.

Post-fit BDT distributions in the ZH channel extracted with the ma = 60 GeV signal hypothesis. Signal regions for the 3b (upper) and 4b (lower) event categories are shown separately for the electron (left) and muon (right) channels. The dotted lines ZH20 GeV and ZH60 GeV, illustrate the shapes of the signal template normalised to the SM cross section times a branching fraction B(H → aa → bbbb) = 1 and scaled by the factors indicated in the figure. The horizontal error bars indicate the bin width.

Model independent 95% CL upper limits on σ(VH) B(H → aa → bbbb)/σ(SM) for the WH channel (upper), the ZH channel (middle), and the combination of both channels (lower), where “a” is a new pseudoscalar particle decaying through a → bb, and σ(SM) is the SM Higgs boson production cross section.

More…

Search for pair production of squarks or gluinos decaying via sleptons or weak bosons in final states with two same-sign or three leptons with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 02 (2024) 107, 2024.
Inspire Record 2673888 DOI 10.17182/hepdata.139720

A search for pair production of squarks or gluinos decaying via sleptons or weak bosons is reported. The search targets a final state with exactly two leptons with same-sign electric charge or at least three leptons without any charge requirement. The analysed data set corresponds to an integrated luminosity of 139 fb$^{-1}$ of proton$-$proton collisions collected at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. Multiple signal regions are defined, targeting several SUSY simplified models yielding the desired final states. A single control region is used to constrain the normalisation of the $WZ$+jets background. No significant excess of events over the Standard Model expectation is observed. The results are interpreted in the context of several supersymmetric models featuring R-parity conservation or R-parity violation, yielding exclusion limits surpassing those from previous searches. In models considering gluino (squark) pair production, gluino (squark) masses up to 2.2 (1.7) TeV are excluded at 95% confidence level.

102 data tables

Observed exclusion limits at 95% CL from Fig 7(a) for $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$

Positive one $\sigma$ observed exclusion limits at 95% CL from Fig 7(a) for $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$

Negative one $\sigma$ observed exclusion limits at 95% CL from Fig 7(a) for $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$

More…

A statistical combination of ATLAS Run 2 searches for charginos and neutralinos at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
CERN-EP-2024-018, 2024.
Inspire Record 2758009 DOI 10.17182/hepdata.149530

Statistical combinations of searches for charginos and neutralinos using various decay channels are performed using $139\,$fb$^{-1}$ of $pp$ collision data at $\sqrt{s}=13\,$TeV with the ATLAS detector at the Large Hadron Collider. Searches targeting pure-wino chargino pair production, pure-wino chargino-neutralino production, or higgsino production decaying via Standard Model $W$, $Z$, or $h$ bosons are combined to extend the mass reach to the produced SUSY particles by 30-100 GeV. The depth of the sensitivity of the original searches is also improved by the combinations, lowering the 95% CL cross-section upper limits by 15%-40%.

38 data tables

Expected 95% CL exclusion limits on the simplified models of chargino-pair production decaying via W bosons.

$+1\sigma$ expected 95% CL exclusion limits on the simplified models of chargino-pair production decaying via W bosons.

$-1\sigma$ expected 95% CL exclusion limits on the simplified models of chargino-pair production decaying via W bosons.

More…

Search for periodic signals in the dielectron and diphoton invariant mass spectra using 139 fb$^{-1}$ of $pp$ collisions at $\sqrt{s} =$ 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 10 (2023) 079, 2023.
Inspire Record 2660845 DOI 10.17182/hepdata.140955

A search for physics beyond the Standard Model inducing periodic signals in the dielectron and diphoton invariant mass spectra is presented using 139 fb$^{-1}$ of $\sqrt{s}=13$ TeV $pp$ collision data collected by the ATLAS experiment at the LHC. Novel search techniques based on continuous wavelet transforms are used to infer the frequency of periodic signals from the invariant mass spectra and neural network classifiers are used to enhance the sensitivity to periodic resonances. In the absence of a signal, exclusion limits are placed at the 95% confidence level in the two-dimensional parameter space of the clockwork gravity model. Model-independent searches for deviations from the background-only hypothesis are also performed.

24 data tables

The observed exclusion limit at 95% CL for the clockwork gravity model projected in the $k–M_{5}$ parameter space for the $ee$ channel for the case with mass thresholds.

The median expected exclusion limit at 95% CL for the clockwork gravity model projected in the $k–M_{5}$ parameter space for the $ee$ channel for the case with mass thresholds.

The expected plus one standard deviation exclusion limit at 95% CL for the clockwork gravity model projected in the $k–M_{5}$ parameter space for the $ee$ channel for the case with mass thresholds.

More…

Version 2
Search for electroweak production of charginos and neutralinos at $\sqrt{s}$ =13 TeV in final states containing hadronic decays of WW, WZ, or WH and missing transverse momentum

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Lett.B 842 (2023) 137460, 2023.
Inspire Record 2085373 DOI 10.17182/hepdata.127766

This Letter presents a search for direct production of charginos and neutralinos via electroweak interactions. The results are based on data from proton-proton collisions at a center-of-mass energy of 13 TeV collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 137 fb$^{-1}$. The search considers final states with large missing transverse momentum and pairs of hadronically decaying bosons WW, WZ, and WH, where H is the Higgs boson. These bosons are identified using novel algorithms. No significant excess of events is observed relative to the expectations from the standard model. Limits at the 95% confidence level are placed on the cross section for production of mass-degenerate wino-like supersymmetric particles $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_2^0$, and mass-degenerate higgsino-like supersymmetric particles $\tilde{\chi}_1^\pm$, $\tilde{\chi}_2^0$, and $\tilde{\chi}_3^0$. In the limit of a nearly-massless lightest supersymmetric particle $\tilde{\chi}_1^0$, wino-like particles with masses up to 870 and 960 GeV are excluded in the cases of $\tilde{\chi}_2^0$ $\to$ Z$\tilde{\chi}_1^0$ and $\tilde{\chi}_2^0$ $\to$ H$\tilde{\chi}_1^0$, respectively, and higgsino-like particles are excluded between 300 and 650 GeV.

44 data tables

SM background prediction vs. observation in the b-veto signal region

SM background observation/prediction in the bVeto signal region

SM background prediction vs. observation in the WH signal region

More…

Constraints on anomalous Higgs boson couplings from its production and decay using the WW channel in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-HIG-22-008, 2024.
Inspire Record 2764172 DOI 10.17182/hepdata.146013

A study of the anomalous couplings of the Higgs boson to vector bosons, including $CP$-violation effects, has been conducted using its production and decay in the WW channel. This analysis is performed on proton-proton collision data collected with the CMS detector at the CERN LHC during 2016-2018 at a center-of-mass energy of 13 TeV, and corresponds to an integrated luminosity of 138 fb$^{-1}$. The different-flavor dilepton (e$\mu$) final state is analyzed, with dedicated categories targeting gluon fusion, electroweak vector boson fusion, and associated production with a W or Z boson. Kinematic information from associated jets is combined using matrix element techniques to increase the sensitivity to anomalous effects at the production vertex. A simultaneous measurement of four Higgs boson couplings to electroweak vector bosons is performed in the framework of a standard model effective field theory. All measurements are consistent with the expectations for the standard model Higgs boson and constraints are set on the fractional contribution of the anomalous couplings to the Higgs boson production cross section.

30 data tables

Expected profiled likelihood on $f_{a2}$ using Approach 1. The signal strength modifiers are treated as free parameters. Axis scales are varied to improve the visibility of important features.

Observed profiled likelihood on $f_{a2}$ using Approach 1. The signal strength modifiers are treated as free parameters. Axis scales are varied to improve the visibility of important features.

Expected profiled likelihood on $f_{\Lambda1}$ using Approach 1. The signal strength modifiers are treated as free parameters. Axis scales are varied to improve the visibility of important features.

More…

Search for Resonant Production of Dark Quarks in the Dijet Final State with the ATLAS Detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 02 (2024) 128, 2024.
Inspire Record 2719976 DOI 10.17182/hepdata.145191

This paper presents a search for a new $Z^\prime$ resonance decaying into a pair of dark quarks which hadronise into dark hadrons before promptly decaying back as Standard Model particles. This analysis is based on proton-proton collision data recorded at $\sqrt{s}=13$ TeV with the ATLAS detector at the Large Hadron Collider between 2015 and 2018, corresponding to an integrated luminosity of 139 fb$^{-1}$. After selecting events containing large-radius jets with high track multiplicity, the invariant mass distribution of the two highest-transverse-momentum jets is scanned to look for an excess above a data-driven estimate of the Standard Model multijet background. No significant excess of events is observed and the results are thus used to set 95 % confidence-level upper limits on the production cross-section times branching ratio of the $Z^\prime$ to dark quarks as a function of the $Z^\prime$ mass for various dark-quark scenarios.

13 data tables

Distribution of the di-jet invariant mass, $m_{\mathrm{JJ}}$ for the data, the simulated multi-jet background and of some representative signals (models A, B, C and D with $m_{Z'}=2.5$ TeV), shown after applying the preselections described in the text. The simulated background is normalised to the data and the signals are normalised to a production cross-section of 10 fb.

Distributions of the number of tracks associated to the leading jet, $n_{track,1}$, for the data, the simulated multi-jet background and of some representative signals (models A, B, C and D with $m_{Z^\prime}=2.5$ TeV), shown after applying the preselections described in the text. All distributions are normalised to unity. The uncertainty band around the background prediction corresponds to the modelling uncertainty described in Section 6.

Distributions of the number of tracks associated to the subleading jet, $n_{track,2}$, for the data, the simulated multi-jet background and of some representative signals (models A, B, C and D with $m_{Z^\prime}=2.5$ TeV), shown after applying the preselections described in the text. All distributions are normalised to unity. The uncertainty band around the background prediction corresponds to the modelling uncertainty described in Section 6.

More…

A search for bottom-type vector-like quark pair production in dileptonic and fully hadronic final states in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-B2G-20-014, 2024.
Inspire Record 2760468 DOI 10.17182/hepdata.145997

A search is described for the production of a pair of bottom-type vector-like quarks (B VLQs) with mass greater than 1000 GeV. Each B VLQ decays into a b quark and a Higgs boson, a b quark and a Z boson, or a t quark and a W boson. This analysis considers both fully hadronic final states and those containing a charged lepton pair from a Z boson decay. The products of the H $to$ bb boson decay and of the hadronic Z or W boson decays can be resolved as two distinct jets or merged into a single jet, so the final states are classified by the number of reconstructed jets. The analysis uses data corresponding to an integrated luminosity of 138 fb$^{-1}$ collected in proton-proton collisions at $\sqrt{s}$ = 13 TeV with the CMS detector at the LHC from 2016 to 2018. No excess over the expected background is observed. Lower limits are set on the B VLQ mass at 95% confidence level. These depend on the B VLQ branching fractions and are 1570 and 1540 GeV for 100% B $\to$ bH and 100% B $\to$ bZ, respectively. In most cases, the mass limits obtained exceed previous limits by at least 100 GeV.

23 data tables

Distributions of reconstructed VLQ mass for expected postfit background (blue histogram), signal plus background (colored lines), and observed data (black points) for events in the hadronic 4-jet bHbH channel.

Distributions of reconstructed VLQ mass for expected postfit background (blue histogram), signal plus background (colored lines), and observed data (black points) for events in the hadronic 4-jet bHbZ channel.

Distributions of reconstructed VLQ mass for expected postfit background (blue histogram), signal plus background (colored lines), and observed data (black points) for events in the hadronic 4-jet bZbZ channel.

More…

Search for nearly mass-degenerate higgsinos using low-momentum mildly-displaced tracks in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2024-012, 2024.
Inspire Record 2751400 DOI 10.17182/hepdata.146944

Higgsinos with masses near the electroweak scale can solve the hierarchy problem and provide a dark matter candidate, while detecting them at the LHC remains challenging if their mass-splitting is $\mathcal{O}$(1 GeV). This Letter presents a novel search for nearly mass-degenerate higgsinos in events with an energetic jet, missing transverse momentum, and a low-momentum track with a significant transverse impact parameter using 140 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}$ = 13 TeV collected by the ATLAS experiment. For the first time since LEP, a range of mass-splittings between the lightest charged and neutral higgsinos from 0.3 GeV to 0.9 GeV is excluded at 95% confidence level, with a maximum reach of approximately 170 GeV in the higgsino mass.

31 data tables

Number of expected and observed data events in the SR (top), and the model-independent upper limits obtained from their consistency (bottom). The symbol $\tau_{\ell}$ ($\tau_{h}$) refers to fully-leptonic (hadron-involved) tau decays. The Others category includes contributions from minor background processes including $t\bar{t}$, single-top and diboson. The individual uncertainties can be correlated and do not necessarily sum up in quadrature to the total uncertainty. The bottom section shows the observed 95% CL upper limits on the visible cross-section ($\langle\epsilon\sigma\rangle_{\mathrm{obs}}^{95}$), on the number of generic signal events ($S_{\mathrm{obs}}^{95}$) as well as the expected limit ($S_{\mathrm{exp}}^{95}$) given the expected number (and $\pm 1\sigma$ deviations from the expectation) of background events.

Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the higgsino simplified model being considered. These are shown with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the latest ATLAS searches using the soft lepton and disappearing track signatures are illustrated by the blue and green regions, respectively, while the limit imposed by the LEP experiments is shown in gray. The dot-dashed gray line indicates the predicted mass-splitting for the pure higgsino scenario.

Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the higgsino simplified model being considered. These are shown with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the latest ATLAS searches using the soft lepton and disappearing track signatures are illustrated by the blue and green regions, respectively, while the limit imposed by the LEP experiments is shown in gray. The dot-dashed gray line indicates the predicted mass-splitting for the pure higgsino scenario.

More…

Search for light long-lived neutral particles from Higgs boson decays via vector-boson-fusion production from $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
CERN-EP-2023-226, 2023.
Inspire Record 2728869 DOI 10.17182/hepdata.145164

A search is reported for long-lived dark photons with masses between 0.1 GeV and 15 GeV, from exotic decays of Higgs bosons produced via vector-boson-fusion. Events that contain displaced collimated Standard Model fermions reconstructed in the calorimeter or muon spectrometer are probed. This search uses the full LHC Run 2 (2015-2018) data sample collected in proton-proton collisions at $\sqrt{s}=13$ TeV, corresponding to an integrated luminosity of 139 $fb^{-1}$. Dominant backgrounds from Standard Model processes and non-collision sources are estimated by using data-driven techniques. The observed event yields in the signal regions are consistent with the expected background. Upper limits on the Higgs boson to dark photon branching fraction are reported as a function of the dark-photon mean proper decay length or of the dark-photon mass and the coupling between the Standard Model and the potential dark sector. This search is combined with previous ATLAS searches obtained in the gluon-gluon fusion and \textit{WH} production modes. A branching fraction above 10% is excluded at 95% CL for a 125 GeV Higgs boson decaying into two dark photons for dark-photon mean proper decay lengths between 173 and 1296 mm and mass of 10 GeV.

20 data tables

Observed 95% CL upper limits on B(H&rarr;&nbsp;2&gamma;<sub>d</sub>+X) for different &gamma;<sub>d</sub> masses and a 125&nbsp;GeV Higgs boson, as a function of the dark-photon mean proper decay length c&tau;. The limits are shown for the SR<sub>&mu;</sub> search channel, assuming an FRVZ signal model. The hatched band denotes the region in which the branching ratio is larger than unity.

Observed 95% CL upper limits on B(H&rarr;&nbsp;2&gamma;<sub>d</sub>+X) for different &gamma;<sub>d</sub> masses and a 125&nbsp;GeV Higgs boson, as a function of the dark-photon mean proper decay length c&tau;. The limits are shown for the SR<sub>c</sub><sup>L</sup> search channel, assuming an FRVZ signal model. The hatched band denotes the region in which the branching ratio is larger than unity.

Observed 95% CL upper limits on B(H&rarr;&nbsp;2&gamma;<sub>d</sub>+X) for different &gamma;<sub>d</sub> masses and a 125&nbsp;GeV Higgs boson, as a function of the dark-photon mean proper decay length c&tau;. The limits are shown for the SR<sub>c</sub><sup>H</sup> search channel, assuming an FRVZ signal model. The hatched band denotes the region in which the branching ratio is larger than unity.

More…

Search for heavy resonances in final states with four leptons and missing transverse momentum or jets in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2023-291, 2024.
Inspire Record 2745376 DOI 10.17182/hepdata.145687

A search for a new heavy boson produced via gluon-fusion in the four-lepton channel with missing transverse momentum or jets is performed. The search uses proton-proton collision data equivalent to an integrated luminosity of 139 fb$^{-1}$ at a centre-of-mass energy of 13 TeV collected by the ATLAS detector between 2015 and 2018 at the Large Hadron Collider. This study explores the decays of heavy bosons: $R\rightarrow SH$ and $A\rightarrow ZH$, where $R$ is a CP-even boson, $A$ is a CP-odd boson, $H$ is a CP-even boson, and $S$ is considered to decay into invisible particles that are candidates for dark matter. In these processes, $S\rightarrow \textrm{invisible}$ and $H\rightarrow ZZ$. The $Z$ boson associated with the heavy scalar boson $H$ decays into all decay channels of the $Z$ boson. The mass range under consideration is 390-1300 (320-1300) GeV for the $R$ ($A$) boson and 220-1000 GeV for the $H$ boson. No significant deviation from the Standard Model backgrounds is observed. The results are interpreted as upper limits at a 95% confidence level on the cross-section times the branching ratio of the heavy resonances.

19 data tables

Observed and expected distributions of the invariant mass of the four-lepton system in the $R\to SH\to 4\ell+E^{\textrm{miss}}_{\textrm{T}}$ search for SR1 under a background-only fit to data. The total background includes the $q\overline{q}\to ZZ$, $gg\to ZZ$, $q\overline{q}\to ZZ$ (EW), $VVV$, $t\overline{t}V$, $t\overline{t}$, $Z$+jets and $WZ$ processes. The distribution of the $(m_{R}, m_{H}) = (500, 300)$ GeV signal is normalised to the observed upper limit on the cross-section (25.0 fb).

Observed and expected distributions of the invariant mass of the four-lepton system in the $R\to SH\to 4\ell+E^{\textrm{miss}}_{\textrm{T}}$ search for SR2 under a background-only fit to data. The total background includes the $q\overline{q}\to ZZ$, $gg\to ZZ$, $q\overline{q}\to ZZ$ (EW), $VVV$, $t\overline{t}V$, $t\overline{t}$, $Z$+jets and $WZ$ processes. The distribution of the $(m_{R}, m_{H}) = (500, 300)$ GeV signal is normalised to the observed upper limit on the cross-section (25.0 fb).

Observed and expected distributions of the invariant mass of the four-lepton system in the $R\to SH\to 4\ell+E^{\textrm{miss}}_{\textrm{T}}$ search for SR3 under a background-only fit to data. The total background includes the $q\overline{q}\to ZZ$, $gg\to ZZ$, $q\overline{q}\to ZZ$ (EW), $VVV$, $t\overline{t}V$, $t\overline{t}$, $Z$+jets and $WZ$ processes. The distribution of the $(m_{R}, m_{H}) = (500, 300)$ GeV signal is normalised to the observed upper limit on the cross-section (25.0 fb).

More…

Search for long-lived particles decaying in the CMS muon detectors in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-EXO-21-008, 2024.
Inspire Record 2755637 DOI 10.17182/hepdata.146645

A search for long-lived particles (LLPs) decaying in the CMS muon detectors is presented. A data sample of proton-proton collisions at $\sqrt{s}$ = 13 TeV corresponding to an integrated luminosity of 138 fb$^{-1}$ recorded at the LHC in 2016-2018, is used. The decays of LLPs are reconstructed as high multiplicity clusters of hits in the muon detectors. In the context of twin Higgs models, the search is sensitive to LLP masses from 0.4 to 55 GeV and a broad range of LLP decay modes, including decays to hadrons, $\tau$ leptons, electrons, or photons. No excess of events above the standard model background is observed. The most stringent limits to date from LHC data are set on the branching fraction of the Higgs boson decay to a pair of LLPs with masses below 10 GeV. This search also provides the best limits for various intervals of LLP proper decay length and mass. Finally, this search sets the first limits at the LHC on a dark quantum chromodynamic sector whose particles couple to the Higgs boson through gluon, Higgs boson, photon, vector, and dark-photon portals, and is sensitive to branching fractions of the Higgs boson to dark quarks as low as 2$\times$10$^{-3}$.

106 data tables

The cluster reconstruction efficiency, including both DT and CSC clusters, as a function of the simulated r and |z| decay positions of the particle S decaying to $d\bar{d}$ in events with $\it{p}_{T}^\text{miss} >$ 200 GeV, for a mass of 40 GeV and a range of c$\tau$ values uniformly distributed between 1 and 10 m.

The DT cluster reconstruction efficiency as a function of the simulated r decay positions of S decaying to $d\bar{d}$ in events with $\it{p}_{T}^\text{miss} >$ 200 GeV, for a mass of 40 GeV and a range of c$\tau$ values between 1 and 10 m. The clusters are selected from signal events satisfying the $\it{p}_{T}^\text{miss} >$ 200 GeV requirement.

The CSC cluster reconstruction efficiency as a function of the simulated |z| decay positions of S decaying to $d\bar{d}$ in events with $\it{p}_{T}^\text{miss} >$ 200 GeV, for a mass of 40 GeV and a range of c$\tau$ values between 1 and 10 m. The clusters are selected from signal events satisfying the $\it{p}_{T}^\text{miss} >$ 200 GeV requirement.

More…

Test of lepton flavor universality in B$^{\pm}$$\to$ K$^{\pm}\mu^+\mu^-$ and B$^{\pm}$$\to$ K$^{\pm}$e$^+$e$^-$ decays in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-BPH-22-005, 2024.
Inspire Record 2747130 DOI 10.17182/hepdata.146018

A test of lepton flavor universality in B$^{\pm}$$\to$ K$^{\pm}\mu^+\mu^-$ and B$^{\pm}$$\to$ K$^{\pm}$e$^+$e$^-$ decays, as well as a measurement of differential and integrated branching fractions of a nonresonant B$^{\pm}$$\to$ K$^{\pm}\mu^+\mu^-$ decay are presented. The analysis is made possible by a dedicated data set of proton-proton collisions at $\sqrt{s}$ = 13 TeV recorded in 2018, by the CMS experiment at the LHC, using a special high-rate data stream designed for collecting about 10 billion unbiased b hadron decays. The ratio of the branching fractions $\mathcal{B}$(B$^{\pm}$$\to$ K$^{\pm}\mu^+\mu^-$) to $\mathcal{B}$(B$^{\pm}$$\to$ K$^{\pm}$e$^+$e$^-$) is determined from the measured double ratio $R$(K) of these decays to the respective branching fractions of the B$^\pm$$\to$ J/$\psi$K$^\pm$ with J/$\psi$$\to$$\mu^+\mu^-$ and e$^+$e$^-$ decays, which allow for significant cancellation of systematic uncertainties. The ratio $R$(K) is measured in the range 1.1 $\lt q^2 \lt$ 6.0 GeV$^2$, where $q$ is the invariant mass of the lepton pair, and is found to be $R$(K) = 0.78$^{+0.47}_{-0.23}$, in agreement with the standard model expectation $R$(K) $\approx$ 1. This measurement is limited by the statistical precision of the electron channel. The integrated branching fraction in the same $q^2$ range, $\mathcal{B}$(B$^{\pm}$$\to$ K$^{\pm}\mu^+\mu^-$) = (12.42 $\pm$ 0.68) $\times$ 10$^{-8}$, is consistent with the present world-average value and has a comparable precision.

9 data tables

The differential $\text{B}^+ \to \text{K}^+\mu^+\mu^-$ branching fraction measured in the individual $q^2$ bins. The uncertainties in the yields are statistical uncertainties from the fit, while the branching fraction uncertainties include both the statistical and systematic components.

Differential branching fraction $d\mathcal{B}/dq^2$, with theoretical predictions obtained with the HEPFiT, SuperIso, Flavio, and EOS packages. The HEPFiT predictions are available only for $q^2 < 8\ \mathrm{GeV}^2$.

Relative uncertainties in the differential branching fraction measurement of $\mathrm{B}^+\to\mathrm{K}^+\mu^+\mu^-$ per $q^2$ bin.

More…

Search for boosted diphoton resonances in the 10 to 70 GeV mass range using 138 fb$^{-1}$ of 13 TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 155, 2023.
Inspire Record 2178061 DOI 10.17182/hepdata.131600

A search for diphoton resonances in the mass range between 10 and 70 GeV with the ATLAS experiment at the Large Hadron Collider (LHC) is presented. The analysis is based on $pp$ collision data corresponding to an integrated luminosity of 138 fb$^{-1}$ at a centre-of-mass energy of 13 TeV recorded from 2015 to 2018. Previous searches for diphoton resonances at the LHC have explored masses down to 65 GeV, finding no evidence of new particles. This search exploits the particular kinematics of events with pairs of closely spaced photons reconstructed in the detector, allowing examination of invariant masses down to 10 GeV. The presented strategy covers a region previously unexplored at hadron colliders because of the experimental challenges of recording low-energy photons and estimating the backgrounds. No significant excess is observed and the reported limits provide the strongest bound on promptly decaying axion-like particles coupling to gluons and photons for masses between 10 and 70 GeV.

7 data tables

The expected and observed upper limits at 95\% CL on the fiducial cross-section times branching ratio to two photons of a narrow-width ($\Gamma_{X}$ = 4 MeV) scalar resonance as a function of its mass $m_{X}$.

Diphoton invariant mass in the signal region using a 0.1 GeV binning.

Parametrization of the $C_{X}$ factor, defined as the ratio between the number of reconstructed signal events passing the analysis cuts and the number of signal events at the particle level generated within the fiducial volume, as function of $m_{X}$ obtained from the narrow width simulated signal samples produced in gluon fusion.

More…

Search for flavor changing neutral current interactions of the top quark in final states with a photon and additional jets in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 109 (2024) 072004, 2024.
Inspire Record 2736549 DOI 10.17182/hepdata.129804

A search for the production of a top quark in association with a photon and additional jets via flavor changing neutral current interactions is presented. The analysis uses proton-proton collision data recorded by the CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. The search is performed by looking for processes where a single top quark is produced in association with a photon, or a pair of top quarks where one of the top quarks decays into a photon and an up or charm quark. Events with an electron or a muon, a photon, one or more jets, and missing transverse momentum are selected. Multivariate analysis techniques are used to discriminate signal and standard model background processes. No significant deviation is observed over the predicted background. Observed (expected) upper limits are set on the branching fractions of top quark decays: $\mathcal{B}$(t $\to$ u$\gamma$) $\lt$ 0.95 $\times$ 10$^{-5}$ (1.20 $\times$ 10$^{-5}$) and $\mathcal{B}$(t $\to$ c$\gamma$) $\lt$ 1.51 $\times$ 10$^{-5}$ (1.54 $\times$ 10$^{-5}$) at 95% confidence level, assuming a single nonzero coupling at a time. The obtained limit for $\mathcal{B}$(t $\to$ u$\gamma$) is similar to the current best limit, while the limit for $\mathcal{B}$(t $\to$ c$\gamma$) is significantly tighter than previous results.

1 data table

Expected and observed 95\% CL upper limits on the branching fraction as well as FCNC couplings of the top quark decaying to the photon and a light-flavor quark (either an up or a charm quark)


Search for an axion-like particle with forward proton scattering in association with photon pairs at ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 07 (2023) 234, 2023.
Inspire Record 2653332 DOI 10.17182/hepdata.140956

A search for forward proton scattering in association with light-by-light scattering mediated by an axion-like particle is presented, using the ATLAS Forward Proton spectrometer to detect scattered protons and the central ATLAS detector to detect pairs of outgoing photons. Proton-proton collision data recorded in 2017 at a centre-of-mass energy of $\sqrt{s} = 13$ TeV were analysed, corresponding to an integrated luminosity of 14.6 fb$^{-1}$. A total of 441 candidate signal events were selected. A search was made for a narrow resonance in the diphoton mass distribution, corresponding to an axion-like particle (ALP) with mass in the range 150-1600 GeV. No excess is observed above a smooth background. Upper limits on the production cross section of a narrow resonance are set as a function of the mass, and are interpreted as upper limits on the ALP production coupling constant, assuming 100% decay branching ratio into a photon pair. The inferred upper limit on the coupling constant is in the range 0.04-0.09 TeV$^{-1}$ at 95%confidence level.

9 data tables

Signal selection efficiency as a function of ALP mass $m_{\textrm{X}}$ for the exclusive (EL), single-dissociative (SD), and double-dissociative (DD) processes. The ratio of the number of selected events to the number of generated MC events is given (black points) and is parameterised by an analytic function (red solid line). The linear (black dashed line) and cubic (blue chain line) interpolations of the black points are used to derive the envelopes (cyan filled region) which are regarded as systematic uncertainties.

The diphoton mass distribution of the mixed-data sample (black points).

The $(\xi_{\gamma\gamma}^{+},\xi_{\gamma\gamma}^{-})$ distribution of the selected data candidates after the full event selection in $m_{\gamma\gamma}$ in [150,1600] GeV with $m_{\gamma\gamma}$ contours (blue) and $y_{\gamma\gamma}$ contours (black). The range of $\xi_{\gamma\gamma}$ in which forward-proton matching is possible, $[0.035-\xi_{\textrm{th}}, 0.08+\xi_{\textrm{th}} ]$, for events that pass the matching requirement to the A or C side as indicated. No event passed the matching requirement for both the A-side and C-side.

More…

Search for the lepton flavor violating $\tau \to $ 3$\mu$ decay in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 853 (2024) 138633, 2024.
Inspire Record 2730742 DOI 10.17182/hepdata.145641

A search for the lepton flavor violating $\tau$$\to$ 3$\mu$ decay is performed using proton-proton collision events at a center-of-mass energy of 13 TeV collected by the CMS experiment at the LHC in 2017-2018, corresponding to an integrated luminosity of 97.7 fb$^{-1}$. Tau leptons produced in both heavy-flavor hadron and W boson decays are exploited in the analysis. No evidence for the decay is observed. The results of this search are combined with an earlier null result based on data collected in 2016 to obtain a total integrated luminosity of 131 fb$^{-1}$. The observed (expected) upper limits on the branching fraction $\mathcal{B}$($\tau$$\to$ 3$\mu$) at confidence levels of 90 and 95% are 2.9 $\times$ 10$^{-8}$ (2.4 $\times$ 10$^{-8}$) and 3.6 $\times$ 10$^{-8}$ (3.0 $\times$ 10$^{-8}$), respectively.

2 data tables

Expected and observed upper limits on the $\tau\to3\mu$ branching fraction at 90% of confidence level for different categories of the analyis.

Expected and observed upper limits on the $\tau\to3\mu$ branching fraction at 95% of confidence level for the Run2 combination.


Search for new Higgs bosons via same-sign top quark pair production in association with a jet in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 850 (2024) 138478, 2024.
Inspire Record 2719537 DOI 10.17182/hepdata.140528

A search is presented for new Higgs bosons in proton-proton (pp) collision events in which a same-sign top quark pair is produced in association with a jet, via the pp $\to$ tH/A $\to$ t$\mathrm{\bar{t}}$c and pp $\to$ tH/A $\to$ t$\mathrm{\bar{t}}$u processes. Here, H and A represent the extra scalar and pseudoscalar boson, respectively, of the second Higgs doublet in the generalized two-Higgs-doublet model (g2HDM). The search is based on pp collision data collected at a center-of-mass energy of 13 TeV with the CMS detector at the LHC, corresponding to an integrated luminosity of 138 fb$^{-1}$. Final states with a same-sign lepton pair in association with jets and missing transverse momentum are considered. New Higgs bosons in the 200-1000 GeV mass range and new Yukawa couplings between 0.1 and 1.0 are targeted in the search, for scenarios in which either H or A appear alone, or in which they coexist and interfere. No significant excess above the standard model prediction is observed. Exclusion limits are derived in the context of the g2HDM.

20 data tables

Pre-fit distributon for leading jet's CvsL variable.

Pre-fit distributon for leading jet's CvsB variable.

Post-fit distributon of BDT discriminants for $\rho_{tu}=1.0$ with $m_A$ = 350 GeV interfered with H.($m_A - m_H$ = 50 GeV)

More…

Search for a CP-odd Higgs boson decaying into a heavy CP-even Higgs boson and a $Z$ boson in the $\ell^+\ell^- t\bar{t}$ and $\nu\bar{\nu}b\bar{b}$ final states using 140 fb$^{-1}$ of data collected with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 02 (2024) 197, 2024.
Inspire Record 2719822 DOI 10.17182/hepdata.144335

A search for a heavy CP-odd Higgs boson, $A$, decaying into a $Z$ boson and a heavy CP-even Higgs boson, $H$, is presented. It uses the full LHC Run 2 dataset of $pp$ collisions at $\sqrt{s}=13$ TeV collected with the ATLAS detector, corresponding to an integrated luminosity of $140$ fb$^{-1}$. The search for $A\to ZH$ is performed in the $\ell^+\ell^- t\bar{t}$ and $\nu\bar{\nu}b\bar{b}$ final states and surpasses the reach of previous searches in different final states in the region with $m_H>350$ GeV and $m_A>800$ GeV. No significant deviation from the Standard Model expectation is found. Upper limits are placed on the production cross-section times the decay branching ratios. Limits with less model dependence are also presented as functions of the reconstructed $m(t\bar{t})$ and $m(b\bar{b})$ distributions in the $\ell^+\ell^- t\bar{t}$ and $\nu\bar{\nu}b\bar{b}$ channels, respectively. In addition, the results are interpreted in the context of two-Higgs-doublet models.

69 data tables

<b><u>Overview of HEPData Record</u></b><br> <b>Upper limits on cross-sections:</b> <ul> <li><a href="?table=Cross-section%20limits%20for%20lltt,%20ggF,%20tanbeta=0.5">95% CL upper limit on ggF A->ZH(tt) production for tanb=0.5</a> <li><a href="?table=Cross-section%20limits%20for%20lltt,%20ggF,%20tanbeta=1">95% CL upper limit on ggF A->ZH(tt) production for tanb=1</a> <li><a href="?table=Cross-section%20limits%20for%20lltt,%20ggF,%20tanbeta=5">95% CL upper limit on ggF A->ZH(tt) production for tanb=5</a> <li><a href="?table=Cross-section%20limits%20for%20lltt,%20bbA,%20tanbeta=1">95% CL upper limit on bbA A->ZH(tt) production for tanb=1</a> <li><a href="?table=Cross-section%20limits%20for%20lltt,%20bbA,%20tanbeta=5">95% CL upper limit on bbA A->ZH(tt) production for tanb=5</a> <li><a href="?table=Cross-section%20limits%20for%20lltt,%20bbA,%20tanbeta=10">95% CL upper limit on bbA A->ZH(tt) production for tanb=10</a> <li><a href="?table=Cross-section%20limits%20for%20vvbb,%20ggA,%20tanbeta=0.5">95% CL upper limit on ggF A->ZH(bb) production for tanb=0.5</a> <li><a href="?table=Cross-section%20limits%20for%20vvbb,%20ggA,%20tanbeta=1">95% CL upper limit on ggF A->ZH(bb) production for tanb=1</a> <li><a href="?table=Cross-section%20limits%20for%20vvbb,%20ggA,%20tanbeta=5">95% CL upper limit on ggF A->ZH(bb) production for tanb=5</a> <li><a href="?table=Cross-section%20limits%20for%20vvbb,%20bbA,%20tanbeta=1">95% CL upper limit on bbA A->ZH(bb) production for tanb=1</a> <li><a href="?table=Cross-section%20limits%20for%20vvbb,%20bbA,%20tanbeta=5">95% CL upper limit on bbA A->ZH(bb) production for tanb=5</a> <li><a href="?table=Cross-section%20limits%20for%20vvbb,%20bbA,%20tanbeta=10">95% CL upper limit on bbA A->ZH(bb) production for tanb=10</a> <li><a href="?table=Cross-section%20limits%20for%20vvbb,%20bbA,%20tanbeta=20">95% CL upper limit on bbA A->ZH(bb) production for tanb=20</a> </ul> <b>Kinematic distributions:</b> <ul> <li><a href="?table=m(tt)&#44;L3hi_Zin&#44;ggF-production">m(tt) distribution in the L3hi_Zin region of the lltt channel</a> <li><a href="?table=m(bb)&#44;2tag&#44;0L&#44;ggF-production">m(bb) distribution in the 2 b-tag 0L region of the vvbb channel</a> <li><a href="?table=m(bb)&#44;3ptag&#44;0L&#44;bbA-production">m(bb) distribution in the 3p b-tag 0L region of the vvbb channel</a> <li><a href="?table=m(lltt)-m(tt)&#44;L3hi_Zin_Hin450&#44;bbA-production">Fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=450 GeV hypothesis with the bbA signal shown</a> <li><a href="?table=m(tt)&#44;L3hi_Zin&#44;bbA-production">m(tt) distribution in the L3hi_Zin region of the lltt channel with the bbA signal shown</a> <li><a href="?table=m(lltt)-m(tt)&#44;L3hi_Zin_Hin350&#44;ggF-production">Fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=350 GeV hypothesis</a> <li><a href="?table=m(lltt)-m(tt)&#44;L3hi_Zin_Hin400&#44;ggF-production">Fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=400 GeV hypothesis</a> <li><a href="?table=m(lltt)-m(tt)&#44;L3hi_Zin_Hin450&#44;ggF-production">Fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=450 GeV hypothesis</a> <li><a href="?table=m(lltt)-m(tt)&#44;L3hi_Zin_Hin500&#44;ggF-production">Fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=500 GeV hypothesis</a> <li><a href="?table=m(lltt)-m(tt)&#44;L3hi_Zin_Hin550&#44;ggF-production">Fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=550 GeV hypothesis</a> <li><a href="?table=m(lltt)-m(tt)&#44;L3hi_Zin_Hin600&#44;ggF-production">Fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=600 GeV hypothesis</a> <li><a href="?table=m(lltt)-m(tt)&#44;L3hi_Zin_Hin700&#44;ggF-production">Fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=700 GeV hypothesis</a> <li><a href="?table=m(lltt)-m(tt)&#44;L3hi_Zin_Hin800&#44;ggF-production">Fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=800 GeV hypothesis</a> <li><a href="?table=mTVH&#44;2tag&#44;0L_Hin130&#44;ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=130 GeV hypothesis</a> <li><a href="?table=mTVH&#44;2tag&#44;0L_Hin150&#44;ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=150 GeV hypothesis</a> <li><a href="?table=mTVH&#44;2tag&#44;0L_Hin200&#44;ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=200 GeV hypothesis</a> <li><a href="?table=mTVH&#44;2tag&#44;0L_Hin250&#44;ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=250 GeV hypothesis</a> <li><a href="?table=mTVH&#44;2tag&#44;0L_Hin300&#44;ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=300 GeV hypothesis</a> <li><a href="?table=mTVH&#44;2tag&#44;0L_Hin350&#44;ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=350 GeV hypothesis</a> <li><a href="?table=mTVH&#44;2tag&#44;0L_Hin400&#44;ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=400 GeV hypothesis</a> <li><a href="?table=mTVH&#44;2tag&#44;0L_Hin450&#44;ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=450 GeV hypothesis</a> <li><a href="?table=mTVH&#44;2tag&#44;0L_Hin500&#44;ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=500 GeV hypothesis</a> <li><a href="?table=mTVH&#44;2tag&#44;0L_Hin600&#44;ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=600 GeV hypothesis</a> <li><a href="?table=mTVH&#44;2tag&#44;0L_Hin700&#44;ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=700 GeV hypothesis</a> <li><a href="?table=mTVH&#44;2tag&#44;0L_Hin800&#44;ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=800 GeV hypothesis</a> <li><a href="?table=mTVH&#44;3ptag&#44;0L_Hin130&#44;bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=130 GeV hypothesis</a> <li><a href="?table=mTVH&#44;3ptag&#44;0L_Hin150&#44;bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=150 GeV hypothesis</a> <li><a href="?table=mTVH&#44;3ptag&#44;0L_Hin200&#44;bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=200 GeV hypothesis</a> <li><a href="?table=mTVH&#44;3ptag&#44;0L_Hin250&#44;bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=250 GeV hypothesis</a> <li><a href="?table=mTVH&#44;3ptag&#44;0L_Hin300&#44;bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=300 GeV hypothesis</a> <li><a href="?table=mTVH&#44;3ptag&#44;0L_Hin350&#44;bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=350 GeV hypothesis</a> <li><a href="?table=mTVH&#44;3ptag&#44;0L_Hin400&#44;bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=400 GeV hypothesis</a> <li><a href="?table=mTVH&#44;3ptag&#44;0L_Hin450&#44;bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=450 GeV hypothesis</a> <li><a href="?table=mTVH&#44;3ptag&#44;0L_Hin500&#44;bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=500 GeV hypothesis</a> <li><a href="?table=mTVH&#44;3ptag&#44;0L_Hin600&#44;bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=600 GeV hypothesis</a> <li><a href="?table=mTVH&#44;3ptag&#44;0L_Hin700&#44;bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=700 GeV hypothesis</a> <li><a href="?table=mTVH&#44;3ptag&#44;0L_Hin800&#44;bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=800 GeV hypothesis</a> <li><a href="?table=mTVH&#44;2tag&#44;2L">Fit discriminant mT(VH) in the 2L region of the vvbb channel</a> <li><a href="?table=mTVH&#44;2tag&#44;em">Fit discriminant mT(VH) in the em region of the vvbb channel</a> <li><a href="?table=mTVH&#44;3ptag&#44;2L">Fit discriminant mT(VH) in the 2L region of the vvbb channel</a> <li><a href="?table=mTVH&#44;3ptag&#44;em">Fit discriminant mT(VH) in the em region of the vvbb channel</a> <li><a href="?table=lep3pt&#44;L3hi_Zin">pT(lepton,3) distribution in the L3hi_Zin region of the lltt channel</a> <li><a href="?table=etaHrestVH&#44;L3hi_Zin">eta(H,VH rest frame) distribution in the signal region of the lltt channel</a> <li><a href="?table=ETmiss&#44;2tag&#44;0L">ETmiss distribution in the 2 b-tag signal region of the vvbb channel</a> <li><a href="?table=mtopnear&#44;2tag&#44;0L">m(top,near) distribution in the 2 b-tag signal region of the vvbb channel</a> <li><a href="?table=ETmiss&#44;3ptag&#44;0L">ETmiss distribution in the 3p b-tag signal region of the vvbb channel</a> <li><a href="?table=mtopnear&#44;3ptag&#44;0L">m(top,near) distribution in the 3p b-tag signal region of the vvbb channel</a> </ul> <b>Observed local significance:</b> <ul> <li><a href="?table=Local%20significance,%20lltt,%20ggF%20production">ggF A->ZH->lltt signals</a> <li><a href="?table=Local%20significance,%20lltt,%20bbA%20production">bbA A->ZH->lltt signals</a> <li><a href="?table=Local%20significance,%20vvbb,%20ggF%20production">ggF A->ZH->vvbb signals</a> <li><a href="?table=Local%20significance,%20vvbb,%20bbA%20production">bbA A->ZH->vvbb signals</a> </ul> <b>Acceptance and efficiency:</b> <ul> <li><a href="?table=Acceptance*efficiency,%20lltt,%20ggF%20production">ggF A->ZH->lltt signals</a> <li><a href="?table=Acceptance*efficiency,%20lltt,%20bbA%20production">bbA A->ZH->lltt signals</a> <li><a href="?table=Acceptance*efficiency,%20vvbb,%20ggF%20production">ggF A->ZH->vvbb signals</a> <li><a href="?table=Acceptance*efficiency,%20vvbb,%20bbA%20production">bbA A->ZH->vvbb signals</a> </ul>

The distribution of the fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=450 GeV hypothesis. <br><br><a href="?table=overview">return to overview</a>

The distribution of the fit discriminant mTVH in the 2 b-tag signal region of the vvbb channel for the mH=300 GeV hypothesis. <br><br><a href="?table=overview">return to overview</a>

More…

Search for high-mass exclusive diphoton production with tagged protons in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS & TOTEM collaborations Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
CMS-EXO-21-007, 2023.
Inspire Record 2719536 DOI 10.17182/hepdata.142335

A search is presented for high-mass exclusive diphoton production via photon-photon fusion in proton-proton collisions at $\sqrt{s}$ = 13 TeV in events where both protons survive the interaction. The analysis utilizes data corresponding to an integrated luminosity of 103 fb$^{-1}$ collected in 2016-2018 with the central CMS detector and the CMS and TOTEM precision proton spectrometer (PPS). Events that have two photons with high transverse momenta ($p_\mathrm{T}^\gamma > $ 100 GeV), back-to-back in azimuth, and with a large diphoton invariant mass ($m_{\gamma\gamma} \gt$ 350 GeV) are selected. To remove the dominant inclusive diphoton backgrounds, the kinematic properties of the protons detected in PPS are required to match those of the central diphoton system. Only events having opposite-side forward protons detected with a fractional momentum loss between 0.035 and 0.15 (0.18) for the detectors on the negative (positive) side of CMS are considered. One exclusive diphoton candidate is observed for an expected background of 1.1 events. Limits at 95% confidence level are derived for the four-photon anomalous coupling parameters $\lvert\zeta_1\rvert \lt$ 0.073 TeV$^{-4}$ and $\lvert\zeta_2\rvert \lt$ 0.15 TeV$^{-4}$, using an effective field theory. Additionally, upper limits are placed on the production of axion-like particles with coupling strength to photons $f^{-1}$ that varies from 0.03 TeV$^{-1}$ to 1 TeV$^{-1}$ over the mass range from 500 to 2000 GeV.

3 data tables

95% expected and observed one-dimensional limits on $\zeta_1$ and $\zeta_2$ anomalous LbyL production parameters, when the other parameter is set to zero. This corresponds to a search region of $m_{\gamma\gamma} > 350$ GeV, $0.070 < \xi^+ < 0.111$, and $0.070 < \xi^- < 0.138$.

Two-dimensional limits on anomalous quartic gauge coupling parameters. The parametric elliptic form is assumed: $\sigma=a_0\zeta_1^2+a_1\zeta_1\zeta_2+a_2\zeta_2^2$.

Limits on axion-like particle production.