Search for long-lived particles decaying to leptons with large impact parameter in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Eur.Phys.J.C 82 (2022) 153, 2022.
Inspire Record 1940976 DOI 10.17182/hepdata.113658

A search for new long-lived particles decaying to leptons using proton-proton collision data produced by the CERN LHC at $\sqrt{s}$ = 13 TeV is presented. Events are selected with two leptons (an electron and a muon, two electrons, or two muons) that both have transverse impact parameter values between 0.01 and 10 cm and are not required to form a common vertex. Data used for the analysis were collected with the CMS detector in 2016, 2017, and 2018, and correspond to an integrated luminosity of 118 (113) fb$^{-1}$ in the ee channel (e$\mu$ and $\mu\mu$ channels). The search is designed to be sensitive to a wide range of models with displaced e$\mu$, ee, and $\mu\mu$ final states. The results constrain several well-motivated models involving new long-lived particles that decay to displaced leptons. For some areas of the available phase space, these are the most stringent constraints to date.

30 data tables

The distribution of electron $|d_0|$ for the events in data and signal that pass the e$\mu$ preselection. In all of the histograms, the last bin includes the overflow. The electron $|d_0|$ distributions have a longer tail than those of muons because the muon $|d_0|$ values are measured more precisely.

The distribution of muon $|d_0|$ for the events in data and signal that pass the e$\mu$ preselection. In all of the histograms, the last bin includes the overflow. The electron $|d_0|$ distributions have a longer tail than those of muons because the muon $|d_0|$ values are measured more precisely.

Two-dimensional distribution of $|d_{0}^{a}|$ vs $|d_{0}^{b}|$, for simulated background events passing the e$\mu$ preselection with 2018 conditions. In each $|d_{0}^{a}|$-$|d_{0}^{b}|$ bin, the number of events divided by the bin area is plotted. The inclusive signal region covers the region between 100 $\mu$m and 10 cm in each $|d_{0}|$ variable shown.

More…

Measurement of Interaction between Antiprotons

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Nature 527 (2015) 345-348, 2015.
Inspire Record 1385105 DOI 10.17182/hepdata.71504

One of the primary goals of nuclear physics is to understand the force between nucleons, which is a necessary step for understanding the structure of nuclei and how nuclei interact with each other. Rutherford discovered the atomic nucleus in 1911, and the large body of knowledge about the nuclear force since acquired was derived from studies made on nucleons or nuclei. Although antinuclei up to antihelium-4 have been discovered and their masses measured, we have no direct knowledge of the nuclear force between antinucleons. Here, we study antiproton pair correlations among data taken by the STAR experiment at the Relativistic Heavy Ion Collider and show that the force between two antiprotons is attractive. In addition, we report two key parameters that characterize the corresponding strong interaction: namely, the scattering length (f0) and effective range (d0). As direct information on the interaction between two antiprotons, one of the simplest systems of antinucleons, our result provides a fundamental ingredient for understanding the structure of more complex antinuclei and their properties.

2 data tables

Correlation function for proton-proton pairs (top), antiproton-antiproton pairs (middle), and the ratio of the former to the latter (bottom).

Measurements of the singlet s-wave scattering length (f0) and the effective range (d0) from this and other experiments.