Three Jet production in deep inelastic scattering at HERA

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Phys.Lett.B 515 (2001) 17-29, 2001.
Inspire Record 558699 DOI 10.17182/hepdata.46712

Three-jet production is studied for the first time in deep-inelastic positron-proton scattering. The measurement carried out with the H1 detector at HERA covers a large range of four-momentum transfer squared 5 < Q^2 < 5000 GeV^2 and invariant three-jet masses 25 < M_(3jet) < 140 GeV. Jets are defined by the inclusive k_T algorithm in the Breit frame. The size of the three-jet cross section and the ratio of the three-jet to the dijet cross section R_(3/2) are described over the whole phase space by the predictions of perturbative QCD in next-to-leading order. The shapes of angular jet distributions deviate significantly from a uniform population of the available phase space but are well described by the QCD calculation.

14 data tables

The inclusive 3-Jet cross section as a function of Q**2.

The ratio of 3 jets to 2 jets as a function of Q**2.

The inclusive 3-JET cross section as a function of Bjorken scaling variableX for the Q**2 range 5 to 100 GeV**2.

More…

Measurements of the structure of quark and gluon jets in hadronic Z decays.

The ALEPH collaboration Barate, R. ; Buskulic, D. ; Decamp, D. ; et al.
Eur.Phys.J.C 17 (2000) 1-18, 2000.
Inspire Record 467225 DOI 10.17182/hepdata.49549

An experimental investigation of the structure of identified quark and gluon jets is presented. Observables related to both the global and internal structure of jets are measured; this allows for test

6 data tables

The measured jet broadening distributions (B) in quark and gluon jets seperately.

Measured distributions of -LN(Y2), where Y2 is the differential one-subjet rate, that is the value of the subjet scale parameter where 2 jets appear from the single jet.

The mean subjet multiplicity (-1) for gluon jets and quark jets for different values of the subject resolution parameter Y0.

More…

Measurement of open beauty production in photoproduction at HERA

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Eur.Phys.J.C 18 (2001) 625-637, 2001.
Inspire Record 537299 DOI 10.17182/hepdata.46847

The production and semi-leptonic decay of heavy quarks have been studied in the photoproduction process $e^+p -> e^+ + {dijet} + e^- + X with the ZEUS detector at HERA using an integrated luminosity of 38.5 ${\rm pb^{-1}}$. Events with photon-proton centre-of-mass energies, $W_{\gamma p}$, between 134 and 269 GeV and a photon virtuality, Q^2, less than 1 ${\rm GeV^2}$ were selected requiring at least two jets of transverse energy $E_T^{\rm jet1(2)} >7(6)$ GeV and an electron in the final state. The electrons were identified by employing the ionisation energy loss measurement. The contribution of beauty quarks was determined using the transverse momentum of the electron relative to the axis of the closest jet, $p_T^{\rm rel}$. The data, after background subtraction, were fit with a Monte Carlo simulation including beauty and charm decays. The measured beauty cross section was extrapolated to the parton level with the b quark restricted to the region of transverse momentum $p_T^{b} > p_T^{\rm min} =$ 5 GeV and pseudorapidity $|\eta^{b}| <$ 2. The extrapolated cross section is $1.6 \pm 0.4 (stat.)^{+0.3}_{-0.5} (syst.) ^{+0.2}_{-0.4} (ext.) {nb}$. The result is compared to a perturbative QCD calculation performed to next-to-leading order.

4 data tables

The differential distribution of PT(C=REL) for heavy quark decays. The second DSYS error is due to the energy scale uncertainty.

The differential distribution of X(C=GAMMA,OBS), the fraction of the photons momentum contributing to the production of the two highest transverse energy jets. The second DSYS error is due to the energy scale uncertainty.

Cross section for beauty production with a prompt electron in the restricted kinetic region.

More…

Measurement of dijet cross sections for events with a leading neutron in photoproduction at HERA.

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Nucl.Phys.B 596 (2001) 3-29, 2001.
Inspire Record 534829 DOI 10.17182/hepdata.46889

Differential cross sections for dijet photoproduction in association with a leading neutron using the reaction e^+ + p --> e^+ + n + jet + jet + X_r have been measured with the ZEUS detector at HERA using an integrated luminosity of 6.4 pb^{-1}. The fraction of dijet events with a leading neutron in the final state was studied as a function of the jet kinematic variables. The cross sections were measured for jet transverse energies E^{jet}_T > 6 GeV, neutron energy E_n > 400 GeV, and neutron production angle theta_n < 0.8 mrad. The data are broadly consistent with factorization of the lepton and hadron vertices and with a simple one-pion-exchange model.

5 data tables

The differential dijet cross section as a function of ET for the inclusive data set. The second DSYS error is due to the uncertainty in the calorimeter energy scale.

The differential dijet cross section as a function of ET for the neutron-tagged data set. The second DSYS error is due to the uncertainty in the calorimeter energy scale.

The differential dijet cross section as a function of ETARAP for the inclusive data set. The second DSYS error is due to the uncertainty in the calorimeterenergy scale.

More…

Measurement of neutral and charged current cross-sections in electron - proton collisions at high Q**2

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Eur.Phys.J.C 19 (2001) 269-288, 2001.
Inspire Record 539088 DOI 10.17182/hepdata.46812

The inclusive e^-p single and double differential cross sections for neutral and charged current processes are measured with the H1 detector at HERA, in the range of four-momentum transfer squared Q^2 between 150 and 30000 GeV^2, and Bjorken x between 0.002 and 0.65. The data were taken in 1998 and 1999 with a centre-of-mass energy of 320 GeV and correspond to an integrated luminosity of 16.4 pb^(-1). The data are compared with recent measurements of the inclusive neutral and charged current e^+p cross sections. For Q^2>1000 GeV^2 clear evidence is observed for an asymmetry between e^+p and e^-p neutral current scattering and the generalised structure function xF_3 is extracted for the first time at HERA. A fit to the charged current data is used to extract a value for the W boson propagator mass. The data are found to be in good agreement with Standard Model predictions.

12 data tables

The NC single differential cross section, as a function of X, for Y < 0.9 and Q**2 > 1000 GeV**2. The first DSYS error is the uncorrelated systematic errorand the second is the correlated systematic error.

The NC single differential cross section, as a function of X, for Y < 0.9 and Q**2 > 10000 GeV**2. The first DSYS error is the uncorrelated systematic error and the second is the correlated systematic error.

The CC single differential cross section, as a function of X, for measured for 0.03 < Y < 0.85 and Q**2 > 1000 GeV**2. and corrected by KCOR to Y < 0.9. The first DSYS error is the uncorrelated systematic error and the second is the correlated systematic error.

More…

Measurement of the E(T,jet)**2/Q**2 dependence of forward-jet production at HERA.

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Phys.Lett.B 474 (2000) 223-233, 2000.
Inspire Record 508906 DOI 10.17182/hepdata.43875

The forward-jet cross section in deep inelastic ep scattering has been measured using the ZEUS detector at HERA with an integrated luminosity of 6.36 pb^-1. The jet cross section is presented as a function of jet transverse energy squared, E(T,jet)^2, and Q^2 in the kinematic ranges 10^-2<E(T,jet)^2/Q^2<10^2 and 2.5 10^-4<x<8.0 10^-2. Since the perturbative QCD predictions for this cross section are sensitive to the treatment of the log(E_T/Q)^2 terms, this measurement provides an important test. The measured cross section is compared to the predictions of a next-to-leading order pQCD calculation as well as to various leading-order Monte Carlo models. Whereas the predictions of all models agree with the measured cross section in the region of small E(T,Jet)^2/Q^2, only one model, which includes a resolved photon component, describes the data over the whole kinematic range.

2 data tables

Forward jet cross section as a function of ET**2/Q**2. The second DSYS error is the uncertainty in the energy scale of the calorimeter.

Measured forward-jet x distribution.


QCD studies with e+ e- annihilation data at 172-GeV to 189-GeV.

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 16 (2000) 185-210, 2000.
Inspire Record 513476 DOI 10.17182/hepdata.49000

We have studied hadronic events from e+e- annihilation data at centre-of-mass energies of sqrt{s}=172, 183 and 189 GeV. The total integrated luminosity of the three samples, measured with the OPAL detector, corresponds to 250 pb^-1. We present distributions of event shape variables, charged particle multiplicity and momentum, measured separately in the three data samples. From these we extract measurements of the strong coupling alpha_s, the mean charged particle multiplicity <nch> and the peak position xi_0 in the xi_p=ln(1/x_p) distribution. In general the data are described well by analytic QCD calculations and Monte Carlo models. Our measured values of alpha_s, <nch> and xi_0 are consistent with previous determinations at sqrt{s}=MZ.

20 data tables

Distribution of Thrust.

Distribution of Thrust Major.

Distribution of Thrust Minor.

More…

Measurement of dijet cross-sections in photoproduction and photon structure

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Phys.Lett.B 483 (2000) 36-48, 2000.
Inspire Record 524764 DOI 10.17182/hepdata.46938

The production of hard di-jet events in photoproduction at HERA is dominated by resolved photon processes in which a parton in the photon with momentum fraction x_gamma is scattered from a parton in the proton. These processes are sensitive to the quark and gluon content of the photon. The differential di-jet cross-section dsigma/dlog(x_gamma) is presented here, measured in tagged photoproduction at HERA using data taken with the H1 detector, corresponding to an integrated luminosity of 7.2 pb^(-1). Using a restricted data sample at high transverse jet energy, E_(T,jet)>6 GeV, the effective parton density f_gamma,eff(x_gamma) = [q(x_gamma) + bar(q)(x_gamma) +9/4g(x_gamma)] in the photon in leading order QCD is measured down to x_gamma=0.05 from which the gluon density in the photon is derived.

2 data tables

The di-jet photoproduction cross section for ET > 4 GeV.

The di-jet photoproduction cross section for ET > 6 GeV after pedestal energy subtraction.


Inclusive Sigma- and Lambda(1520) production in hadronic Z decays.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 475 (2000) 429-447, 2000.
Inspire Record 524694 DOI 10.17182/hepdata.49984

Production of Sigma- and Lambda(1520) in hadronic Z decays has been measured using the DELPHI detector at LEP. The Sigma- is directly reconstructed as a charged track in the DELPHI microvertex detector and is identified by its Sigma -> n pi decay leading to a kink between the Sigma- and pi-track. The reconstruction of the Lambda(1520) resonance relies strongly on the particle identification capabilities of the barrel Ring Imaging Cherenkov detector and on the ionisation loss measurement of the TPC. Inclusive production spectra are measured for both particles. The production rates are measured to be <N_{Sigma-}/N_{Z}^{had}> = 0.081 +/- 0.002 +/- 0.010, <N_{Lambda(1520)}/N_{Z}^{had}> = 0.029 +/- 0.005 +/- 0.005. The production rate of the Lambda(1520) suggests that a large fraction of the stable baryons descend from orbitally excited baryonic states. It is shown that the baryon production rates in Z decays follow a universal phenomenological law related to isospin, strangeness and mass of the particles.

4 data tables

The measured differential cross section for SIGMA- production.

The total production rate of SIGMA-. The second systematic (DSYS) error is due to the extrapolation to the fullx-range.

The measured differential cross section for LAMBDA(1520) production. The first error is the fit error.

More…

Measurement of D*+- production and the charm contribution to F2 in deep inelastic scattering at HERA.

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Eur.Phys.J.C 12 (2000) 35-52, 2000.
Inspire Record 505056 DOI 10.17182/hepdata.43895

The production of D*+-(2010) mesons in deep inelastic scattering has been measured in the ZEUS detector at HERA using an integrated luminosity of 37 pb^-1. The decay channels D*+ -> D0 pi+(+c.c.), with D0 -> K- pi+ or D0 ->K- pi- pi+ pi+, have been used to identify the D mesons. The e+p cross section for inclusive D*+- production with 1<Q^2<600 GeV^2 and 0.02<y<0.7 is 8.31 +- 0.31(stat.) +0.30-0.50(syst.) nb in the kinematic region 1.5< pT(D*+-)<15 GeV and |eta(D*+-)|<1.5. Differential cross sections are consistent with a next-to-leading-order perturbative-QCD calculation when using charm-fragmentation models which take into account the interaction of the charm quark with the proton remnant. The observed cross section is extrapolated to the full kinematic region in pT(D*+-) and eta(D*+-) in order to determine the charm contribution, F^ccbar_2(x,Q^2), to the proton structure function. The ratio F^ccbar_2/F_2 rises from ~10% at Q^2 ~1.8 GeV^2 to ~30% at Q^2 ~130 GeV^2 for x values in the range 10^-4 to 10-3.

22 data tables

The measured cross section for D* production. The first is derived from theK2PI final state and the second from the K4PI final state.

The differential cross section w.r.t. Q**2 from the K2PI final state. The asymmetric errors are the quadratic sum of the statistical and systematic errors. The statistical errors are also shown separately.

The differential cross section w.r.t. X from the K2PI final state. The asymmetric errors are the quadratic sum of the statistical and systematic errors. The statistical errors are also shown separately.

More…