Date

Subject_areas

Cmenergies

Prompt and non-prompt J/$\psi$ production and nuclear modification at mid-rapidity in p-Pb collisions at ${\bf \sqrt{{\it s}_{\text{NN}}}= 5.02}$ TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
No Journal Information, 2018.
Inspire Record 1652829 DOI 10.17182/hepdata.81948

A measurement of beauty hadron production at mid-rapidity in proton-lead collisions at a nucleon-nucleon centre-of-mass energy $\sqrt{s_{\rm NN}}=5.02$ TeV is presented. The semi-inclusive decay channel of beauty hadrons into J/$\psi$ is considered, where the J/$\psi$ mesons are reconstructed in the dielectron decay channel at mid-rapidity down to transverse momenta of 1.3 GeV/$c$. The ${\rm {b\overline{b}}}$ production cross section at mid-rapidity, ${\rm d}\sigma_{\rm {b\overline{b}}}/{\rm d} y$, and the total cross section extrapolated over full phase space, $\sigma_{\rm {b\overline{b}}}$, are obtained. This measurement is combined with results on inclusive J/$\psi$ production to determine the prompt J/$\psi$ cross sections. The results in p-Pb collisions are then scaled to expectations from pp collisions at the same centre-of-mass energy to derive the nuclear modification factor $R_{\rm pPb}$, and compared to models to study possible nuclear modifications of the production induced by cold nuclear matter effects. $R_{\rm pPb}$ is found to be smaller than unity at low $p_{\rm T}$ for both J/$\psi$ coming from beauty hadron decays and prompt J/$\psi$.

12 data tables

Fraction of non-prompt J/$\psi$ in pPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV for different $p_{\rm T}$ ranges.

Fraction of non-prompt J/$\psi$ in pPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV for different $p_{\rm T}$ ranges.

Fraction of non-prompt J/$\psi$ in pp collisions at $\sqrt{s_{NN}}$ = 5.02 TeV for different $p_{\rm T}$ ranges, as determined with a procedure of interpolation from measurments at other energies. It is not a direct measurment.

More…

Version 2
Measurement of forward $J/\psi$ production cross-sections in $pp$ collisions at $\sqrt{s}=13$ TeV

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 1510 (2015) 172, 2015.
Inspire Record 1391511 DOI 10.17182/hepdata.70048

The production of J/ψ mesons in proton-proton collisions at a centre-of-mass energy of $ \sqrt{s}=13 $ TeV is studied with the LHCb detector. Cross-section measurements are performed as a function of the transverse momentum p$_{T}$ and the rapidity y of the J/ψ meson in the region p$_{T}$ < 14 GeV/c and 2.0 < y < 4.5, for both prompt J/ψ mesons and J/ψ mesons from b-hadron decays. The production cross-sections integrated over the kinematic coverage are 15.30 ± 0.03 ± 0.86 μb for prompt J/ψ and 2.34 ± 0.01 ± 0.13 μb for J/ψ from b-hadron decays, assuming zero polarization of the J/ψ meson. The first uncertainties are statistical and the second systematic. The cross-section reported for J/ψ mesons from b-hadron decays is used to extrapolate to a total $ b\overline{b} $ cross-section. The ratios of the cross-sections with respect to $ \sqrt{s}=8 $ TeV are also determined.

13 data tables

Double differential cross-section for prompt $J/\psi$ mesons as a function of $p_\perp$ in bins of $y$. The first uncertainties are statistical, the second are the correlated systematic uncertainties shared between bins and the last are the uncorrelated systematic uncertainties.

Double differential cross-section for $J/\psi$-from-$b$ mesons as a function of $p_\perp$ in bins of $y$. The first uncertainties are statistical, the second are the correlated systematic uncertainties shared between bins and the last are the uncorrelated systematic uncertainties.

The fraction of $J/\psi$-from-$b$ mesons (in %) in bins of the $J/\psi$ $p_\perp$ and $y$. The uncertainties are statistical only. The systematic uncertainties are negligible.

More…

Energy dependence of forward-rapidity J/$\psi$ and $\psi(2S)$ production in pp collisions at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
No Journal Information, 2017.
Inspire Record 1511865 DOI 10.17182/hepdata.77781

We present results on transverse momentum ($p_{\rm T}$) and rapidity ($y$) differential production cross sections, mean transverse momentum and mean transverse momentum square of inclusive J/$\psi$ and $\psi(2S)$ at forward rapidity ($2.5<y<4$) as well as $\psi(2S)$-to-J/$\psi$ cross section ratios. These quantities are measured in pp collisions at center of mass energies $\sqrt{s}=5.02$ and 13 TeV with the ALICE detector. Both charmonium states are reconstructed in the dimuon decay channel, using the muon spectrometer. A comprehensive comparison to inclusive charmonium cross sections measured at $\sqrt{s}=2.76$, 7 and 8 TeV is performed. A comparison to non-relativistic quantum chromodynamics and fixed-order next-to-leading logarithm calculations, which describe prompt and non-prompt charmonium production respectively, is also presented. A good description of the data is obtained over the full $p_{\rm T}$ range, provided that both contributions are summed. In particular, it is found that for $p_{\rm T}>15$ GeV/$c$ the non-prompt contribution reaches up to 50% of the total charmonium yield.

14 data tables

Differential production cross sections of $J/\psi$ as a function of $p_{\rm T}$.

Differential production cross sections of $J/\psi$ as a function of rapidity.

Differential production cross sections of $\psi(2S)$ as a function of $p_{\rm T}$.

More…

W and Z boson production in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
JHEP 1702 (2017) 077, 2017.
Inspire Record 1496634 DOI 10.17182/hepdata.77359

The W and Z boson production was measured via the muonic decay channel in proton-lead collisions at $ \sqrt{s_{\mathrm{NN}}}=5.02 $ TeV at the Large Hadron Collider with the ALICE detector. The measurement covers backward (−4.46 < y$_{cms}$ < −2.96) and forward (2.03 < y$_{cms}$ < 3.53) rapidity regions, corresponding to Pb-going and p-going directions, respectively. The Z-boson production cross section, with dimuon invariant mass of 60 < m$_{μμ}$ < 120 GeV/c$^{2}$ and muon transverse momentum (p$_{T}^{μ}$ ) larger than 20 GeV/c, is measured. The production cross section and charge asymmetry of muons from W-boson decays with p$_{T}^{μ}$ > 10 GeV/c are determined. The results are compared to theoretical calculations both with and without including the nuclear modification of the parton distribution functions. The W-boson production is also studied as a function of the collision centrality: the cross section of muons from W-boson decays is found to scale with the average number of binary nucleon-nucleon collisions within uncertainties.

6 data tables

Z-boson production cross section in the dimuon decay channel at backward and forward rapidities measured in p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV. The first uncertainty is statistical, the second is systematic.

Cross section of $\mu^{+}$ from W$^{+}$ boson decay at backward and forward rapidities measured in p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV. The first uncertainty is statistical, the second is systematic.

Cross section of $\mu^{-}$ from W$^{-}$ boson decay at backward and forward rapidities measured in p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV. The first uncertainty is statistical, the second is systematic.

More…

$\phi$-meson production at forward rapidity in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV and in pp collisions at $\sqrt{s}$ = 2.76 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Lett. B768 (2017) 203-217, 2017.
Inspire Record 1380453 DOI 10.17182/hepdata.77057

The first measurement of $\phi$-meson production in p-Pb collisions at a nucleon-nucleon centre-of-mass energy $\sqrt{s_{\rm NN}}$ = 5.02 TeV has been performed with the ALICE apparatus at the LHC. The $\phi$-mesons have been identified in the dimuon decay channel in the transverse momentum ($p_{\rm T}$) range $1 < p_{\rm T} < 7$ GeV/$c$, both in the p-going ($2.03 < y < 3.53$) and the Pb-going ($-4.46 < y < -2.96$) directions, where $y$ stands for the rapidity in the nucleon-nucleon centre-of-mass. Differential cross sections as a function of transverse momentum and rapidity are presented. The forward-backward asymmetry for $\phi$-meson production is measured for $2.96<|y|<3.53$, resulting in a factor $\sim 0.5$ with no significant $p_{\rm T}$ dependence within the uncertainties. The $p_{\rm T}$ dependence of the $\phi$ nuclear modification factor $R_{\rm pPb}$ exhibits an enhancement up to a factor 1.6 at $p_{\rm T}$ = 3-4 GeV/$c$ in the Pb-going direction. The $p_{\rm T}$ dependence of the $\phi$-meson cross section in pp collisions at $\sqrt{s}$ = 2.76 TeV, which is used to determine a reference for the p-Pb results, is also presented here for $1 < p_{\rm T} < 5$ GeV/$c$ and $2.5 <y < 4$.

4 data tables

$p_{\rm T}$-differential production cross section of $\phi$ in pp at $\sqrt{s_{\rm NN}}$=2.76 TeV, in the rapidity range 2.5 < y < 4

$p_{\rm T}$-differential production cross section of $\phi$ in p-Pb at $\sqrt{s_{\rm NN}}$=5.02 TeV, in the rapidity range 4.46 < y < 2.96

$p_{\rm T}$-differential production cross section of $\phi$ in p-Pb at $\sqrt{s_{\rm NN}}$=5.02 TeV, in the rapidity range 2.03 < y < 3.53

More…

D-meson production in p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV and in pp collisions at $\sqrt{s}=7$ TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
No Journal Information, 2016.
Inspire Record 1465513 DOI 10.17182/hepdata.73941

The production cross sections of the prompt charmed mesons D$^0$, D$^+$, D$^{*+}$ and D$_s$ were measured at mid-rapidity in p-Pb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}}=5.02$ TeV with the ALICE detector at the LHC. D mesons were reconstructed from their decays D$^0\rightarrow{\rm K}^-\pi^+$, D$^+\rightarrow{\rm K}^-\pi^+\pi^+$, D$^{*+}\rightarrow D^0\pi^+$, D$_s^+\rightarrow\phi\pi^+\rightarrow{\rm K}^-{\rm K}^+\pi^+$, and their charge conjugates. The $p_{\rm T}$-differential production cross sections were measured at mid-rapidity in the interval $1<p_{\rm T}<24$ GeV/$c$ for D$^0$, D$^+$ and D$^{*+}$ mesons and in $2<p_{\rm T}<12$ GeV/$c$ for D$_s$ mesons, using an analysis method based on the selection of decay topologies displaced from the interaction vertex. The production cross sections of the D$^0$, D$^+$ and D$^{*+}$ mesons were also measured in three $p_{\rm T}$ intervals as a function of the rapidity $y_{\rm cms}$ in the centre-of-mass system in $-1.26<y_{\rm cms}<0.34$. In addition, the prompt D$^0$ cross section was measured in pp collisions at $\sqrt{s}=7$ TeV and p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV down to $p_{\rm T}=0$ using an analysis technique that is based on the estimation and subtraction of the combinatorial background, without reconstruction of the D$^0$ decay vertex. The nuclear modification factor $R_{\rm pPb}(p_{\rm T})$, defined as the ratio of the $p_{\rm T}$-differential D-meson cross section in p-Pb collisions and that in pp collisions scaled by the mass number of the Pb nucleus, was calculated for the four D-meson species and found to be compatible with unity within experimental uncertainties. The results are compared to theoretical calculations that include cold-nuclear-matter effects and to transport model calculations incorporating the interactions of charm quarks with an expanding deconfined medium.

21 data tables

pT-differential cross section of inclusive Dzero mesons in pp collisions at sqrt{sNN}=7 TeV in the rapidity interval |y|<0.5. Branching ratio of D0->Kpi : 0.0388.

pT-differential cross section of prompt Dzero mesons in pp collisions at sqrt{sNN}=7 TeV in the rapidity interval |y|<0.5. Branching ratio of D0->Kpi : 0.0388. Data points for pt<2 GeV/c from analysis "without vertexing". Data points for pt>2 GeV/c from the analysis "with vertexing" taken from JHEP 1201 (2012) 128 (http://hepdata.cedar.ac.uk/view/ins944757) and corrected for the updated BR value.

First column: production cross sections per unit of rapidity for prompt D0 mesons, inclusive D0 mesons (no feed-down subtraction) and charm quarks at mid-rapidity in pp collisions at 7 TeV. For D0 mesons, the second (sys) error is from the luminosity uncertainty, the third (sys) error is from the branching-ratio uncertainties. For charm quarks, the second (sys) error is from the luminosity uncertainty, the third (sys) error is from the Fragmentation Function uncertainties, the fourth (sys) error is from the rapidity shapes of D0 mesons and single charm quarks. Second column: total production cross sections, extrapolated to the full phase space, for prompt D0 mesons and charm quarks. For D0 mesons, the second (sys) error is the from the extrapolation uncertainty, the third from the luminosity uncertainty and the fourth from the branching-ratio uncertainties. For charm quarks, the second (sys) error is from the extrapolation, the third is from the luminosity uncertainty and the fourth is from the Fragmentation Function uncertainties. Third column: value of <pT> of prompt D0 mesons. The first uncertainty is statistical, the second is the systematic uncertainty.

More…

Forward production of $\Upsilon$ mesons in $pp$ collisions at $\sqrt{s}=7$ and 8TeV

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 1511 (2015) 103, 2015.
Inspire Record 1392456 DOI 10.17182/hepdata.249

The production of Υ mesons in pp collisions at $ \sqrt{s}=7 $ and 8 TeV is studied with the LHCb detector using data samples corresponding to an integrated luminosity of 1 fb$^{−1}$ and 2 fb$^{−1}$ respectively. The production cross-sections and ratios of cross-sections are measured as functions of the meson transverse momentum p and rapidity y, for p < 30 GeV/c and 2.0 < y < 4.5.

22 data tables

Double-differential cross-section $\mathrm{d}^2 \sigma ( pp \to ( \Upsilon \to \mu^+ \mu^- ) X ) / \mathrm{d} p_T/\mathrm{d}y$ [pb/(GeV/$c$)] for $2.0 < y < 2.5$.

Double-differential cross-section $\mathrm{d}^2 \sigma ( pp \to ( \Upsilon \to \mu^+ \mu^- ) X ) / \mathrm{d} p_T/\mathrm{d}y$ [pb/(GeV/$c$)] for $2.0 < y < 2.5$.

Double-differential cross-section $\mathrm{d}^2 \sigma ( pp \to ( \Upsilon \to \mu^+ \mu^- ) X ) / \mathrm{d} p_T/\mathrm{d}y$ [pb/(GeV/$c$)].

More…

STUDY OF THE RESONANCE PRODUCTION IN anti-n p INTERACTIONS AT 6.1-GeV/c

The Dubna-Moscow-Bucharest-Kosice-Sofiya collaboration Batyunya, B.V. ; Boguslavsky, I.V. ; Bruncko, D. ; et al.
Sov.J.Nucl.Phys. 47 (1988) 468, 1988.
Inspire Record 246882 DOI 10.17182/hepdata.9876
9 data tables

No description provided.

No description provided.

No description provided.

More…

Inclusive Strange Particle Production in $\pi^+ p$ Interactions at 32-{GeV}/$c$

Azhinenko, I.V. ; Belokopytov, Yu.A. ; Borovikov, A.A. ; et al.
Nucl.Phys. B165 (1980) 1-18, 1980.
Inspire Record 141734 DOI 10.17182/hepdata.8000
12 data tables

No description provided.

No description provided.

No description provided.

More…

DELTA++ AND ANTI-DELTA++ PRODUCTION IN 100-GEV/C ANTI-P P INTERACTIONS.

Ward, D.R. ; Ansorge, R.E. ; Bust, C.P. ; et al.
Nucl.Phys. B141 (1978) 203-219, 1978.
Inspire Record 132549 DOI 10.17182/hepdata.8291
5 data tables

No description provided.

No description provided.

No description provided.

More…

Study of the Inclusive Reaction $K^+ p \to \Delta^{++}$ (1236) X0 at 32-{GeV}/$c$

The French-Soviet CERN-Soviet collaborations Chliapnikov, P.V. ; Gorbunov, P.A. ; Klimenko, S.V. ; et al.
Nucl.Phys. B164 (1980) 189-213, 1980.
Inspire Record 141735 DOI 10.17182/hepdata.8244
6 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of forward $\rm Z\rightarrow e^+e^-$ production at $\sqrt{s}=8$ TeV

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 1505 (2015) 109, 2015.
Inspire Record 1347133 DOI 10.17182/hepdata.73305

A measurement of the cross-section for Z-boson production in the forward region of pp collisions at 8 TeV centre-of-mass energy is presented. The measurement is based on a sample of Z → e$^{+}$e$^{−}$ decays reconstructed using the LHCb detector, corresponding to an integrated luminosity of 2.0 fb$^{−1}$. The acceptance is defined by the requirements 2.0 < η < 4.5 and p$_{T}$ > 20 GeV for the pseudorapidities and transverse momenta of the leptons. Their invariant mass is required to lie in the range 60-120 GeV. The cross-section is determined to be $ \sigma \left(\mathrm{pp}\to \mathrm{Z}\to {\mathrm{e}}^{+}{\mathrm{e}}^{-}\right)=93.81\pm 0.41\left(\mathrm{stat}\right)\pm 1.48\left(\mathrm{syst}\right)\pm 1.14\left(\mathrm{lumi}\right)\mathrm{p}\mathrm{b}, $ where the first uncertainty is statistical and the second reflects all systematic effects apart from that arising from the luminosity, which is given as the third uncertainty. Differential cross-sections are presented as functions of the Z-boson rapidity and of the angular variable ϕ$^{∗}$, which is related to the Z-boson transverse momentum.

3 data tables

Integrated cross-section for Z$\to$ e$^+$e$^-$ within the LHCb acceptance.

Differential cross-section for Z$\to$ e$^+$e$^-$ as a function of Z-boson rapidity. The first error is statistical, the second the uncorrelated experimental systematic, the third the correlated experimental systematic and the last error is the uncertainty in luminosity. The cross-sections are at the Born level, i.e. before FSR. The rightmost column gives values of the additional factor, $f_{\rm FSR}$, by which the results should be multiplied in order to give the cross-sections after FSR.

Differential cross-section for Z$\to$ e$^+$e$^-$ as a function of $\phi^*$. The first error is statistical, the second the uncorrelated experimental systematic, the third the correlated experimental systematic and the last error is the uncertainty in luminosity. The cross-sections are at the Born level, i.e. before FSR. The rightmost column gives values of the additional factor, $f_{\rm FSR}$, by which the results should be multiplied in order to give the cross-sections after FSR.


Multi - Hadronic Events at E(c.m.) = 29-GeV and Predictions of QCD Models from E(c.m.) = 29-GeV to E(c.m.) = 93-GeV

Petersen, A. ; Abrams, G.S. ; Adolphsen, Chris ; et al.
Phys.Rev. D37 (1988) 1, 1988.
Inspire Record 246184 DOI 10.17182/hepdata.4114

Multihadronic e+e− annihilation events at a center-of-mass energy of 29 GeV have been studied with both the original (PEP 5) Mark II and the upgraded Mark II detectors. Detector-corrected distributions from global shape analyses such as aplanarity, Q2-Q1, sphericity, thrust, minor value, oblateness, and jet masses, and inclusive charged-particle distributions including x, rapidity, p⊥, and particle flow are presented. These distributions are compared with predictions from various multihadron event models which use leading-logarithmic shower evolution or QCD matrix elements at the parton level and string or cluster fragmentation for hadronization. The new generation of parton-shower models gives, on the average, a better description of the data than the previous parton-shower models. The energy behavior of these models is compared to existing e+e− data. The predictions of the models at a center-of-mass energy of 93 GeV, roughly the expected mass of the Z0, are also presented.

74 data tables

Aplanarity distribution.

QX Distribution(QX=SQRT(3)*(Q3-Q2)).

The (Q2-Q1) distribution.

More…

Centrality dependence of $\mathbf{\psi}$(2S) suppression in p-Pb collisions at $\mathbf{\sqrt{{\textit s}_{\rm NN}}}$ = 5.02 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
JHEP 1606 (2016) 050, 2016.
Inspire Record 1426826 DOI 10.17182/hepdata.73306

The inclusive production of the ψ(2S) charmonium state was studied as a function of centrality in p-Pb collisions at the nucleon-nucleon center of mass energy $ {\sqrt{s}}_{\mathrm{NN}}=5.02 $ TeV at the CERN LHC. The measurement was performed with the ALICE detector in the center of mass rapidity ranges −4.46 < y$_{cms}$ < −2.96 and 2.03 < y$_{cms}$ < 3.53, down to zero transverse momentum, by reconstructing the ψ(2S) decay to a muon pair. The ψ(2S) production cross section σ$_{ψ(2S)}$ is presented as a function of the collision centrality, which is estimated through the energy deposited in forward rapidity calorimeters. The relative strength of nuclear effects on the ψ(2S) and on the corresponding 1S charmonium state J/ψ is then studied by means of the double ratio of cross sections [σ$_{ψ(2S)}$ /σ$_{J/ψ}$ ]$_{pPb}$ /[σ$_{ψ(2S)}$ /σ$_{J/ψ}$ ]$_{pp}$ between p-Pb and pp collisions, and by the values of the nuclear modification factors for the two charmonium states. The results show a large suppression of ψ(2S) production relative to the J/ψ at backward (negative) rapidity, corresponding to the flight direction of the Pb-nucleus, while at forward (positive) rapidity the suppressions of the two states are comparable. Finally, comparisons to results from lower energy experiments and to available theoretical models are presented.

7 data tables

Centrality-differential cross section dsigma_JPsi/dy in the backward and forward rapidity ranges (-4.46<y_cms<-2.96 and 2.03<y_cms<3.53). The first uncertainty is statistical, the second is a systematic one. The third uncertainty is a systematic uncertainty fully correlated over centrality.

Centrality dependence of the Psi(2S)/J/Psi ratio in the backward and forward rapidity ranges (-4.46<y_cms<-2.96 and 2.03<y_cms<3.53). The first uncertainty is statistical, the second is a systematic one. The third systematic uncertainty is fully correlated over centrality.

Centrality dependence of the (Psi(2S)/J/Psi)_pA/(Psi(2S)/J/Psi)_pp double ratio in the backward and forward rapidity range (-4.46<y_cms<-2.96 and 2.03<y_cms<3.53). The first uncertainty is statistical, the second one is a systematic one. The third systematic uncertainty is fully correlated over centrality, but uncorrelated versus rapidity, while the fourth uncertainty is fully correlated over centrality and over rapidity.

More…

Inclusive $J/\psi$ production in $pp$ collisions at $\sqrt{s} = 2.76$ TeV

The ALICE collaboration Abelev, B. ; Adam, J. ; Adamova, D. ; et al.
Phys.Lett. B718 (2012) 295-306, 2012.
Inspire Record 1094079 DOI 10.17182/hepdata.62231

The ALICE Collaboration has measured inclusive J/psi production in pp collisions at a center of mass energy sqrt(s)=2.76 TeV at the LHC. The results presented in this Letter refer to the rapidity ranges |y|<0.9 and 2.5<y<4 and have been obtained by measuring the electron and muon pair decay channels, respectively. The integrated luminosities for the two channels are L^e_int=1.1 nb^-1 and L^mu_int=19.9 nb^-1, and the corresponding signal statistics are N_J/psi^e+e-=59 +/- 14 and N_J/psi^mu+mu-=1364 +/- 53. We present dsigma_J/psi/dy for the two rapidity regions under study and, for the forward-y range, d^2sigma_J/psi/dydp_t in the transverse momentum domain 0<p_t<8 GeV/c. The results are compared with previously published results at sqrt(s)=7 TeV and with theoretical calculations.

4 data tables

Double differential J/$\psi$ production cross section at $\sqrt{s}=2.76$ TeV. The first uncertainty is statistical, the second one is $p_{\rm T}$-coorelated, the third one is uncorrelated. Polarization-related uncertainties are not included.

The $\sqrt{s}$-dependence of $\langle p_{\rm T}\rangle$ for inclusive J/$\psi$ production (forward rapidity).

the $\sqrt{s}$-dependence of $\langle p_{\rm T}\rangle$ for inclusive J/$\psi$ production (forward rapidity).

More…

Measurement of the exclusive Υ production cross-section in pp collisions at $ \sqrt{s}=7 $ TeV and 8 TeV

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 1509 (2015) 084, 2015.
Inspire Record 1373746 DOI 10.17182/hepdata.72986

A study is presented of central exclusive production of Υ(nS) states, where the Υ(nS) resonances decay to the μ$^{+}$ μ$^{−}$ final state, using pp collision data recorded by the LHCb experiment. The cross-section is measured in the rapidity range 2 < y(Υ) < 4.5 where the muons are reconstructed in the pseudorapidity range 2 < η(μ$^{±}$) < 4.5. The data sample corresponds to an integrated luminosity of 2.9 fb$^{−1}$ and was collected at centre-of-mass energies of 7 TeV and 8 TeV. The measured Υ(1S) and Υ(2S) production cross-sections are $ \sigma \left( pp\to pY(1S)p\right)=9.0\pm 2.1\pm 1.7\kern0.5em \mathrm{p}\mathrm{b}\kern0.5em \mathrm{and}\kern0.5em \sigma \left( pp\to pY(2S)p\right)=1.3\pm 0.8\pm 0.3\kern0.5em \mathrm{p}\mathrm{b}, $ where the first uncertainties are statistical and the second are systematic. The Υ(1S) crosssection is also measured as a function of rapidity and is found to be in good agreement with Standard Model predictions. An upper limit is set at 3.4 pb at the 95% confidence level for the exclusive Υ(3S) production cross-section, including possible contamination from χ$_{b}$ (3P ) → Υ(3S)γ decays.

2 data tables

Production cross-section for the $\Upsilon(1S)$ resonance in ranges of $\Upsilon(1S)$ rapidity, where the muons are required to lie in the pseudorapidity range $2 < \eta(\mu^{\pm}) < 4.5$. The first uncertainties are statistical and the second ones are systematic.

Differential production cross-section for $\Upsilon(1S)$, where the data have been corrected for the effect of the LHCb geometrical acceptance. The statistical and systematic uncertainties are combined in quadrature.


Inclusive quarkonium production at forward rapidity in pp collisions at $\sqrt{s}=8$ TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Eur.Phys.J. C76 (2016) 184, 2016.
Inspire Record 1395099 DOI 10.17182/hepdata.72936

We report on the inclusive production cross sections of ${\mathrm{J}/\psi }$ , ${\psi (\mathrm{2S})}$ , $\mathrm{\Upsilon }$ (1S), $\mathrm{\Upsilon }$ (2S) and $\mathrm{\Upsilon }$ (3S), measured at forward rapidity with the ALICE detector in $\mathrm{pp}$ collisions at a center-of-mass energy $\sqrt{s}=8$  TeV. The analysis is based on data collected at the LHC and corresponds to an integrated luminosity of 1.23 pb$^{-1}$ . Quarkonia are reconstructed in the dimuon-decay channel. The differential production cross sections are measured as a function of the transverse momentum ${p_\mathrm{T}}$ and rapidity y, over the ${p_\mathrm{T}}$ ranges $0<{p_\mathrm{T}}<20$  GeV/c for ${\mathrm{J}/\psi }$ , $0<{p_\mathrm{T}}<12$  GeV/c for all other resonances, and for $2.5<y<4$ . The cross sections, integrated over ${p_\mathrm{T}}$ and y, and assuming unpolarized quarkonia, are $\sigma _{{\mathrm{J}/\psi }} = 8.98\pm 0.04\pm 0.82$   $\upmu $ b, $\sigma _{{\psi (\mathrm{2S})}} = 1.23\pm 0.08\pm 0.22$   $\upmu $ b, $\sigma _{\mathrm{\Upsilon }\mathrm{(1S)}} = 71\pm 6\pm 7$  nb, $\sigma _{\mathrm{\Upsilon }\mathrm{(2S)}} = 26\pm 5\pm 4$  nb and $\sigma _{\mathrm{\Upsilon }\mathrm{(3S)}} = 9\pm 4\pm 1$  nb, where the first uncertainty is statistical and the second one is systematic. These values agree, within at most $1.4\sigma $ , with measurements performed by the LHCb collaboration in the same rapidity range.

17 data tables

Differential production cross sections of J/$\psi$ as a function of $p_{\rm T}$.

Differential production cross sections of J/$\psi$ as a function of rapidity.

integrated production cross section of J/$\psi$.

More…

Study of B Meson Production in p$+$Pb Collisions at $\sqrt(s_{NN}=$5.02  TeV Using Exclusive Hadronic Decays

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.Lett. 116 (2016) 032301, 2016.
Inspire Record 1390110 DOI 10.17182/hepdata.71407

The production cross sections of the B+, B0, and Bs0 mesons, and of their charge conjugates, are measured via exclusive hadronic decays in p+Pb collisions at the center-of-mass energy sNN=5.02  TeV with the CMS detector at the CERN LHC. The data set used for this analysis corresponds to an integrated luminosity of 34.6  nb-1. The production cross sections are measured in the transverse momentum range between 10 and 60  GeV/c. No significant modification is observed compared to proton-proton perturbative QCD calculations scaled by the number of incoherent nucleon-nucleon collisions. These results provide a baseline for the study of in-medium b quark energy loss in Pb+Pb collisions.

8 data tables

The measured $p_{\rm{T}}$-differential production cross section of $B^{+}$ in $p$ + Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, together with the cross section calculated by the FONLL model.

The measured $p_{\rm{T}}$-differential production cross section of $B^{0}$ in $p$ + Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, together with the cross section calculated by the FONLL model.

The measured $p_{\rm{T}}$-differential production cross section of $B_{s}^{0}$ in $p$ + Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, together with the cross section calculated by the FONLL model.

More…

Measurement of an excess in the yield of $J/\psi$ at very low $p_{\rm T}$ in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Rev.Lett. 116 (2016) 222301, 2016.
Inspire Record 1395296 DOI 10.17182/hepdata.72639
4 data tables

J/$\psi$ nuclear modification factor $R_{\rm AA}$ as a function of the mean number of participant nucleons $\langle N_{\rm{part}}\rangle$, the first error is statistical, the second error is systematic uncorrelated in $p_{\rm T}$ and centrality, the third error is systematic correlated in $p_{\rm T}$ but not in centrality, the fourth error is systematic correlated in centrality but not in $p_{\rm T}$ and the fifth error is systematic correlated in $p_{\rm T}$ and centrality.

J/$\psi$ nuclear modification factor $R_{\rm AA}$ as a function of the mean number of participant nucleons $\langle N_{\rm{part}}\rangle$, the first error is statistical, the second error is systematic uncorrelated in $p_{\rm T}$ and centrality, the third error is systematic correlated in $p_{\rm T}$ but not in centrality, the fourth error is systematic correlated in centrality but not in $p_{\rm T}$ and the fifth error is systematic correlated in $p_{\rm T}$ and centrality.

J/$\psi$ nuclear modification factor $R_{\rm AA}$ as a function of the mean number of participant nucleons $\langle N_{\rm{part}}\rangle$, the first error is statistical, the second error is systematic uncorrelated in $p_{\rm T}$ and centrality, the third error is systematic correlated in $p_{\rm T}$ but not in centrality, the fourth error is systematic correlated in centrality but not in $p_{\rm T}$ and the fifth error is systematic correlated in $p_{\rm T}$ and centrality.

More…

Study of Z boson production in pPb collisions at $\sqrt {s NN }$=5.02TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett. B759 (2016) 36-57, 2016.
Inspire Record 1410832 DOI 10.17182/hepdata.71358
3 data tables

Differential cross section of the Z bosons in pPb collisions as a function of rapidity in the fiducial region for the combined leptonic decay channel.

Forward-backward asymmetry (AFB) distribution of the Z bosons in pPb collisions as a function of rapidity in the fiducial region for the combined leptonic decay channel.

Differential cross section of the Z bosons in pPb collisions as a function of transverse momentum in the fiducial region for the combined leptonic decay channel.


Dijet production in $\sqrt{s}=$ 7 TeV $pp$ collisions with large rapidity gaps at the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett. B754 (2016) 214-234, 2016.
Inspire Record 1402356 DOI 10.17182/hepdata.70762

A $6.8 \ {\rm nb^{-1}}$ sample of $pp$ collision data collected under low-luminosity conditions at $\sqrt{s} = 7$ TeV by the ATLAS detector at the Large Hadron Collider is used to study diffractive dijet production. Events containing at least two jets with $p_\mathrm{T} > 20$ GeV are selected and analysed in terms of variables which discriminate between diffractive and non-diffractive processes. Cross sections are measured differentially in $\Delta\eta^F$, the size of the observable forward region of pseudorapidity which is devoid of hadronic activity, and in an estimator, $\tilde{\xi}$, of the fractional momentum loss of the proton assuming single diffractive dissociation ($pp \rightarrow pX$). Model comparisons indicate a dominant non-diffractive contribution up to moderately large $\Delta\eta^F$ and small $\tilde{\xi}$, with a diffractive contribution which is significant at the highest $\Delta\eta^F$ and the lowest $\tilde{\xi}$. The rapidity-gap survival probability is estimated from comparisons of the data in this latter region with predictions based on diffractive parton distribution functions.

6 data tables

The cross section differential in the forward rapidity gap size, DELTA(C=RAPGAP), for events with at least two jets of pt > 20 GeV found by the anti-kt jet algorithm with R=0.6.

The cross section differential in the forward rapidity gap size, DELTA(C=RAPGAP), for events with at least two jets of pt > 20 GeV found by the anti-kt jet algorithm with R=0.4.

The cross section differential in the fraction of the proton four-momentum carried by the Pomeron, LOG10(C=XI), for events with at least two jets of pt > 20 GeV found by the anti-kt jet algorithm with R=0.6.

More…

Measurement of the forward $Z$ boson production cross-section in $pp$ collisions at $\sqrt{s}=7$ TeV

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 1508 (2015) 039, 2015.
Inspire Record 1373300 DOI 10.17182/hepdata.2114

A measurement of the production cross-section for Z bosons that decay to muons is presented. The data were recorded by the LHCb detector during pp collisions at a centre-of-mass energy of 7 TeV, and correspond to an integrated luminosity of 1.0 fb$^{−1}$. The cross-section is measured for muons in the pseudorapidity range 2.0 < η < 4.5 with transverse momenta p$_{T}$ > 20 GeV/c. The dimuon mass is restricted to 60 < M$_{μ}$ +$_{μ}$ − < 120 GeV/c$^{2}$. The measured cross-section is $ {\sigma}_{Z\to \mu }{+}_{\mu }-=\left(76.0\pm 0.3\pm 0.5\pm 1.0\pm 1.3\right)\mathrm{p}\mathrm{b} $

11 data tables

Inclusive cross-section for $Z$ boson production in bins of rapidity. The uncertainties are statistical, systematic, beam and luminosity.

Inclusive cross-section for $Z$ boson production in bins of transverse momentum. The uncertainties are statistical, systematic, beam and luminosity.

Inclusive cross-section for $Z$ boson production in bins of PHI*. The uncertainties are statistical, systematic, beam and luminosity.

More…

Measurement of the $\Lambda_b$ cross section and the $_{\bar{\Lambda}_b}$ to $\Lambda_b$ ratio with $J/\Psi \Lambda$ decays in $pp$ collisions at $\sqrt{s}=7$ TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Lett. B714 (2012) 136-157, 2012.
Inspire Record 1113442 DOI 10.17182/hepdata.58908

The Lambda(b) differential production cross section and the cross section ratio anti-Lambda(b)/Lambda(b) are measured as functions of transverse momentum pt(Lambda(b)) and rapidity abs(y(Lambda(b))) in pp collisions at sqrt(s) = 7 TeV using data collected by the CMS experiment at the LHC. The measurements are based on Lambda(b) decays reconstructed in the exclusive final state J/Psi Lambda, with the subsequent decays J/Psi to an opposite-sign muon pair and Lambda to proton pion, using a data sample corresponding to an integrated luminosity of 1.9 inverse femtobarns. The product of the cross section times the branching ratio for Lambda(b) to J/Psi Lambda versus pt(Lambda(b)) falls faster than that of b mesons. The measured value of the cross section times the branching ratio for pt(Lambda(b)) > 10 GeV and abs(y(Lambda(b))) < 2.0 is 1.06 +/- 0.06 +/- 0.12 nb, and the integrated cross section ratio for anti-Lambda(b)/Lambda(b) is 1.02 +/- 0.07 +/- 0.09, where the uncertainties are statistical and systematic, respectively.

3 data tables

The measured Lambda/B integrated cross section and the ratio of anti-Lambda/B to Lambda/B cross sections.

The measured Lambda/B differential cross section and the ratio of anti-Lambda/B to Lambda/B cross sections as a function of the Lambda/B transverse momentum The second and third systematic errors on the cross sections are the common luminosity and branching fraction uncertainties respectively.

The measured Lambda/B differential cross section and the ratio of anti-Lambda/B to Lambda/B cross sections as a function of the Lambda/B absolute rapidity. The second and third systematic errors on the cross sections are the common luminosity and branching fraction uncertainties respectively.


Measurements of normalized differential cross sections for $t\bar{t}$ production in pp collisions at $\sqrt{s}=7$  TeV using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Phys.Rev. D90 (2014) 072004, 2014.
Inspire Record 1304289 DOI 10.17182/hepdata.67128

Measurements of normalized differential cross-sections for top-quark pair production are presented as a~function of the top-quark transverse momentum, and of the mass, transverse momentum, and rapidity of the $t\bar{t}$ system, in proton--proton collisions at a~center-of-mass energy of $\sqrt{s}$ = 7 TeV. The dataset corresponds to an integrated luminosity of 4.6 fb$^{-1}$, recorded in 2011 with the ATLAS detector at the CERN Large Hadron Collider. Events are selected in the lepton+jets channel, requiring exactly one lepton and at least four jets with at least one of the jets tagged as originating from a~$b$-quark. The measured spectra are corrected for detector efficiency and resolution effects and are compared to several Monte Carlo simulations and theory calculations. The results are in fair agreement with the predictions in a~wide kinematic range. Nevertheless, data distributions are softer than predicted for higher values of the mass of the $t\bar{t}$ system and of the top-quark transverse momentum. The measurements can also discriminate among different sets of parton distribution functions.

8 data tables

Normalized differential cross-sections for the hadronically decaying top-quark PT. The cross-section in each bin is given as the integral of the normalized differential cross-section over the bin width, divided by the bin width. The calculation of the cross-sections in the last bins includes events falling outside of the bin edges, and the normalization is done within the quoted bin width. The full covariance matrice is provided in Table 5 below.

Normalized differential cross-sections for the mass of the ttbar system. The cross-section in each bin is given as the integral of the normalized differential cross-section over the bin width, divided by the bin width. The calculation of the cross-sections in the last bins includes events falling outside of the bin edges, and the normalization is done within the quoted bin width. The full covariance matrice is provided in Table 6 below.

Normalized differential cross-sections for the PT of the ttbar system. The cross-section in each bin is given as the integral of the normalized differential cross-section over the bin width, divided by the bin width. The calculation of the cross-sections in the last bins includes events falling outside of the bin edges, and the normalization is done within the quoted bin width. The full covariance matrice is provided in Table 7 below.

More…

Measurements of differential and double-differential Drell-Yan cross sections in proton-proton collisions at 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J. C75 (2015) 147, 2015.
Inspire Record 1332509 DOI 10.17182/hepdata.69869

Measurements of the differential and double-differential Drell–Yan cross sections in the dielectron and dimuon channels are presented. They are based on proton–proton collision data at $\sqrt{s} = 8\,\text {TeV} $ recorded with the CMS detector at the LHC and corresponding to an integrated luminosity of 19.7 $\,\text {fb}^{-1}$ . The measured inclusive cross section in the $\mathrm{Z}$ peak region (60–120 $\,\text {GeV}$ ), obtained from the combination of the dielectron and dimuon channels, is $1138 \pm 8\,\text {(exp)} \pm 25\,\text {(theo)} \pm 30\,\text {(lumi)} \text {\,pb} $ , where the statistical uncertainty is negligible. The differential cross section $\mathrm{d}\sigma /\mathrm{d}{}m$ in the dilepton mass range 15–2000 $\,\text {GeV}$ is measured and corrected to the full phase space. The double-differential cross section $\mathrm{d}^2\sigma /\mathrm{d}{}m\,\mathrm{d}|y |$ is also measured over the mass range 20 to 1500 $\,\text {GeV}$ and absolute dilepton rapidity from 0 to 2.4. In addition, the ratios of the normalized differential cross sections measured at $\sqrt{s} = 7$ and 8 $\,\text {TeV}$ are presented. These measurements are compared to the predictions of perturbative QCD at next-to-leading and next-to-next-to-leading (NNLO) orders using various sets of parton distribution functions (PDFs). The results agree with the NNLO theoretical predictions computed with fewz 3.1 using the CT10 NNLO and NNPDF2.1 NNLO PDFs. The measured double-differential cross section and ratio of normalized differential cross sections are sufficiently precise to constrain the proton PDFs.

15 data tables

Absolute Drell-Yan cross section measurements in the Z peak region (60 < m < 120 GeV). The uncertainties in the measurements include the experimental and theoretical systematic sources and the uncertainty in the integrated luminosity. The statistical component is negligible.

The Drell-Yan differential pre-FSR cross section D(SIG)/DM as measured in the combined dilepton channel for the full phase space. Theoretical uncertainty on acceptance is included.

The Drell-Yan pre-FSR dilepton rapidity distribution D(SIG)/DABS(YRAP) within the detector acceptance, for the mass bin 20-30 GeV, as measured in the combined dilepton channel.

More…