Measurement of the neutral weak form factors of the proton.

The HAPPEX collaboration Aniol, K.A. ; Armstrong, D.S. ; Baylac, M. ; et al.
Phys.Rev.Lett. 82 (1999) 1096-1100, 1999.
Inspire Record 478059 DOI 10.17182/hepdata.31319

We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from the proton. The kinematic point (theta_lab = 12.3 degrees and Q^2=0.48 (GeV/c)^2) is chosen to provide sensitivity, at a level that is of theoretical interest, to the strange electric form factor G_E^s. The result, A=-14.5 +- 2.2 ppm, is consistent with the electroweak Standard Model and no additional contributions from strange quarks. In particular, the measurement implies G_E^s + 0.39G_M^s = 0.023 +- 0.034 (stat) +- 0.022 (syst) +- 0.026 (delta G_E^n), where the last uncertainty arises from the estimated uncertainty in the neutron electric form factor.

1 data table

Longitudinally polarized beam. C=L and C=R means left- and right polarization. The second systematic uncertainty arises from the estimated uncertainty inthe neutron electromagnetic from factor.


Electroproduction of the Delta Resonance at High Momentum Transfer

Frolov, V.V. ; Adams, G.S. ; Ahmidouch, A. ; et al.
Phys.Rev.Lett. 82 (1999) 45-48, 1999.
Inspire Record 475116 DOI 10.17182/hepdata.41616

We studied the electroproduction of the Delta(1232) resonance via the reaction p(e,e'p)\pi0 at four-momentum transfers Qsq = 2.8 and 4.0 GeV^2. This is the highest Qsq for which exclusive resonance electroproduction has ever been observed. Decay angular distributions for Delta to p-pi0$ were measured over a wide range of barycentric energies covering the resonance. The $N-\Delta$ transition form factor G*_M and ratios of resonant multipoles E{1+}/M{1+} and S{1+}/M{1+} were extracted from the decay angular distributions. These ratios remain small, indicating that perturbative QCD is not applicable for this reaction at these momentum transfers.

4 data tables

CONST(NAME=E1+/M1+) and CONST(NAME=S1+/M1+) are the ratios of the electric quadrupole moment to magnetic dipole moment and Coulomb quadrupole moment to magnetic dipole moment, respectively (see paper). Resonance only.

CONST(NAME=E1+/M1+) and CONST(NAME=S1+/M1+) are the ratios of the electric quadrupole moment to magnetic dipole moment and Coulomb quadrupole moment to magnetic dipole moment, respectively (see paper). Resonance only.

CONST(NAME=E1+/M1+) and CONST(NAME=S1+/M1+) are the ratios of the electric quadrupole moment to magnetic dipole moment and Coulomb quadrupole moment to ma gnetic dipole moment, respectively (see paper). Resonance + background.

More…

Studies of the Cabibbo-suppressed decays D+ --> pi0 l+ nu and D+ --> eta e+ nu/e.

The CLEO collaboration Bartelt, John E. ; Csorna, S.E. ; Jain, V. ; et al.
Phys.Lett.B 405 (1997) 373-378, 1997.
Inspire Record 441553 DOI 10.17182/hepdata.47235

Using 4.8 fb$~{-1}$ of data taken with the CLEO II detector, the branching fraction for the Cabibbo-suppressed decay $D~+\to\pi~0\ell~+\nu$ measured relative to the Cabibbo favored decay $D~+\to\bar{K~0}\ell~+\nu$ is found to be $0.046\pm 0.014\pm 0.017$. Using $V_{cs}$ and $V_{cd}$ from unitarity constraints, we determine $| f_+~{\pi}(0)/f_+~K(0)|~2=0.9\pm 0.3\pm 0.3$ We also present a 90% confidence level upper limit for the branching ratio of the decay $D~+ \to \eta e~+\nu_e$ relative to that for $D~+ \to \pi~0 e~+\nu_e$ of 1.5.

1 data table

Formfactors for the D+ (D-) decay into pseudoscalar P. Charge conjugate states are implied. LEPTON+ means E+ or MU+. VCD and VCS are the elements of the CKM matrix (See R.M.Barnett et al (PDG), PR D54, 1 (1996)).


Measurement of the proton's neutral weak magnetic form factor.

The SAMPLE collaboration Mueller, B. ; Beck, D.H. ; Beise, E.J. ; et al.
Phys.Rev.Lett. 78 (1997) 3824-3827, 1997.
Inspire Record 440739 DOI 10.17182/hepdata.31349

We report the first measurement of the parity-violating asymmetry in elastic electron scattering from the proton. The asymmetry depends on the neutral weak magnetic form factor of the proton which contains new information on the contribution of strange quark-antiquark pairs to the magnetic moment of the proton. We obtain the value $G_M~Z= 0.34 \pm 0.09 \pm 0.04 \pm 0.05$ n.m. at $Q~2=0.1$ (GeV/c)${}~2$.

1 data table

Polarized beam. FORMFACTOR(NAME=GZM) = (1/4)*(GM_P-GM_N) - SIN2TW*GM_P - (1/4)*GM_S, whereFORMFACTOR(NAME=GM_S) is the strange quark contribution. FORMFACTOR(NAME=GZM) and FORMFACTOR(NAME=GM_S) are in nucleon magnetic FF.


Measurements of B ---> D(s)+ X decays

The CLEO collaboration Gibaut, D. ; Kinoshita, K. ; Pomianowski, P. ; et al.
Phys.Rev.D 53 (1996) 4734-4746, 1996.
Inspire Record 401599 DOI 10.17182/hepdata.47241

This paper describes new measurements from CLEO of the inclusive B→Ds+X branching fraction as well as the B+→Ds(*)+D¯(*)0 and B0→Ds(*)+D(*)− branching fractions. The inclusive branching fraction is B(B→Ds+X)=(12.11±0.39±0.88±1.38)% where the first error is statistical, the second is the systematic error, and the third is the error due to the uncertainty in the Ds+→φπ+ branching fraction. The branching fractions for the B→Ds(*)+D¯(*) modes are found to be between 0.9% and 2.4% and are significantly more precise than previous measurements. The sum of the B→Ds(*)+D¯(*) branching fractions is consistent with the results of fits to the inclusive Ds+ momentum spectrum. Factorization is used to arrive at a value for fDs, the Ds+ decay constant. © 1996 The American Physical Society.

1 data table

FORMFACTOR(NAME=FP,C=DECAY CONSTANT) is pseudoscalar meson decay constant. Three different methods are used: 1) C=MUNU: D/S+ --> MU+ NUMU, 2) C = ENU: B --> D/S+ D*BAR / B --> D*BAR E+ NU, and 3) C = PI : B --> D/S+ D*BAR / B0 - -> PI+(RHO+) D*BAR-. The F(D/S) is evaluated from B decay assuming the factorization.


Electromagnetic proton form-factors at squared four momentum transfers between 1-GeV/c**2 and 3-GeV/c**2

Bartel, W. ; Busser, F.W. ; Dix, W.R. ; et al.
Phys.Lett.B 33 (1970) 245-248, 1970.
Inspire Record 63047 DOI 10.17182/hepdata.45284

Electron-proton elastic scattering cross sections have been measured at four-momentum transfers between 1.0 and 3.0 (GeV/ c ) 2 and at electron scattering angles between 10° and 20° and at about 86° in the laboratory. The proton electromagnetic form factors G E and G M were determined. The results indicate that G E ( q 2 ) decreases faster with increasing q 2 than G M ( q 2 ).

2 data tables

Axis error includes +- 2.5/2.5 contribution (Due to counting statisticss, separation of elastic events, beam monitoring, incident energy, scattering angle, proton absorption, solid angle, target length and density).

CONST(NAME=MU) is the magnetic moment.


Electromagnetic form-factors of the proton between 5 and 50 1/fm-squared

Berger, Christoph ; Gersing, E. ; Knop, G. ; et al.
Phys.Lett.B 28 (1968) 276-278, 1968.
Inspire Record 56842 DOI 10.17182/hepdata.29174

The external beam of the 2.5 GeV-electron-synchrotron has been used to measre elastic electron proton scattering at four-momentum-transfers between 15 and 50 fm −2 . By combining these results with measurements at small angles at DESY, we have obtained the electric and magnetic form factors separately. Their ratio shows a deviation from the scaling law.

2 data tables

No description provided.

No description provided.


Neutron form-factors from quasielastic e d scattering

Bartel, W. ; Buesser, F.W. ; Dix, W.R. ; et al.
Phys.Lett.B 30 (1969) 285-288, 1969.
Inspire Record 56662 DOI 10.17182/hepdata.45282

The reaction e+d→e′+n+p was studied at electron scattering angles θ ⩽ 35° for four-momentum transfers of 0.39, 0.565 and 0.78 (GeV/ c ) 2 . By recording electron-neutron and electron-proton coincidences, the ratio of the electron scattering cross sections on quasi-free neutrons and protons was determined. An estimate of the binding effects, based on a Chew-Low-extrapolation, was made. Values for the neutron form factors were derived.

2 data tables

Axis error includes +- 0.0/0.0 contribution (Due to the different effective solid angles for neutron and proton detection in the counters).

No description provided.


Electroproduction of pions near the $\Delta(1236)$ isobar and the form-factor $G^*_M(q^2)$ of the $({\gamma} N\Delta)$ vertex

Bartel, W. ; Dudelzak, B. ; Krehbiel, H. ; et al.
Phys.Lett.B 28 (1968) 148-151, 1968.
Inspire Record 52791 DOI 10.17182/hepdata.45279

The cross section for inelastic electron-proton scattering was measured at incident electron energies of 1.5 to 6 GeV by magnetic analysis of the scattered electrons at angles between 10° and 35°. For invariant masses of the hardonic final state W ⩽ 1.4 GeV. the measured spectra are compared with theoretical predictions for electroproduction of the Δ(1236) isobar. The magnetic dipole transition form factor G ∗ M ( q 2 ) of the (γ N Δ)-vertex is derived for momentum transfers q 2 = 0.2 − 2.34 (GeV/ c ) 2 ard found to decrease more rapidly with q 2 than the proton form factors.

1 data table

Axis error includes +- 0.0/0.0 contribution.


Quasielastic Electron-Deuteron Scattering Between q$^2$=18f$^{-2}$ and 100f$^{-2}$

Albrecht, W. ; Behrend, H.J. ; Dorner, H. ; et al.
Phys.Lett.B 26 (1968) 642-644, 1968.
Inspire Record 53149 DOI 10.17182/hepdata.29312

Quasielastic e-d scattering measurements were performed up to q 2 = 100 fm −2 . Only the electron was detected. The ratio R= ( d 2 ω d Ω d E′) ed d ω d Ω) ep was measured at the quasielastic peak; the magnetic form factor G M N of the neutron was deduced using the assumption G E N = 0.

2 data tables

No description provided.

CONST(NAME=MU) is the magnetic moment. The magnetic formfarctor (GM) is evaluated ander assumption of GE=0.