Measurement of the branching ratio for D/s- --> tau- anti-nu/tau decays.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Phys.Lett.B 516 (2001) 236-248, 2001.
Inspire Record 553945 DOI 10.17182/hepdata.49836

Using about 3.9 million hadronic Z decays from e+e- collisions recorded by the OPAL detector at LEP at centre-of-mass energies near MZ the branching ratio for the decay D_s -> tau nu_tau has been measured to be (7.0 +/- 2.1(stat) +/- 2.0 (syst))%. This result can be used to derive the decay constant of the D_s meson: f(D_s) = 286 +/- 44(stat) +/- 41(syst) MeV.

1 data table

FORMFACTOR(NAME=FP,C=DECAY CONSTANT) is pseudoscalar meson decay constant.


Measurement of the neutron electric form factor G(E,n) in the quasifree H-2(e(pol.),e' n(pol.))p reaction.

Ostrick, M. ; Herberg, C. ; Andresen, H.G. ; et al.
Phys.Rev.Lett. 83 (1999) 276-279, 1999.
Inspire Record 506748 DOI 10.17182/hepdata.19444

The electric form factor of the neutron GE,n has been measured in the quasifree 2H(e→,e′n→)p reaction using the 855 MeV polarized cw electron beam of the Mainz Microtron MAMI. The polarization of the scattered neutrons was analyzed in a polarimeter consisting of two walls of plastic scintillators. The precession of the neutron spin in a magnetic field was used for the first time to circumvent the measurement of the effective analyzing power of the polarimeter and the beam polarization. In this way GE,n could be determined with little model dependence and experimental uncertainties. The result GE,n(0.34GeV2/c2)=0.0611±0.0069stat({+0.0069}{−0.0055})syst is larger than previously assumed.

1 data table

No description provided.


Measurement of Structure Dependent K^+ -> mu^+ nu gamma

The E787 collaboration Adler, S. ; Atiya, M.S. ; Chiang, I-H. ; et al.
Phys.Rev.Lett. 85 (2000) 2256-2259, 2000.
Inspire Record 525021 DOI 10.17182/hepdata.19424

We report the first measurement of a structure dependent component in the decay K^+ -> mu^+ nu gamma. Using the kinematic region where the muon kinetic energy is greater than 137 MeV and the photon energy is greater than 90 MeV, we find that the absolute value of the sum of the vector and axial-vector form factors is |F_V+F_A| =0.165 \pm 0.007 \pm 0.011. This corresponds to a branching ratio of BR(SD^+) = (1.33 \pm 0.12 \pm 0.18) \times 10^{-5}. We also set the limit -0.04 < F_V-F_A < 0.24 at 90% c.l.

1 data table

Q2 independence of the formfactors is assumed.


A kinematically complete measurement of K+ --> pi+ pi0 pi0 decays.

The KEK PS E246 collaboration Shin, Y.H. ; Abe, M. ; Aoki, M. ; et al.
Eur.Phys.J.C 12 (2000) 627-631, 2000.
Inspire Record 526005 DOI 10.17182/hepdata.24453

None

1 data table

The Dalitz plot parameters G, H, and K are used in the standard parameterization of the matrix element squared (see PDG): M**2 = 1 + G*X + H*X**2 + K*Y**2,where X = (s3-s0)/m(PI)**2 and Y = (s1-s2)/m(PI)**2, s1 = (pK - pPI0)**2, s2 = (pK - pPI0)**2, s3 = (pK - pPI+)**2, s0 = (s1+s2+s3)/3.


Electroproduction of the Delta Resonance at High Momentum Transfer

Frolov, V.V. ; Adams, G.S. ; Ahmidouch, A. ; et al.
Phys.Rev.Lett. 82 (1999) 45-48, 1999.
Inspire Record 475116 DOI 10.17182/hepdata.41616

We studied the electroproduction of the Delta(1232) resonance via the reaction p(e,e'p)\pi0 at four-momentum transfers Qsq = 2.8 and 4.0 GeV^2. This is the highest Qsq for which exclusive resonance electroproduction has ever been observed. Decay angular distributions for Delta to p-pi0$ were measured over a wide range of barycentric energies covering the resonance. The $N-\Delta$ transition form factor G*_M and ratios of resonant multipoles E{1+}/M{1+} and S{1+}/M{1+} were extracted from the decay angular distributions. These ratios remain small, indicating that perturbative QCD is not applicable for this reaction at these momentum transfers.

4 data tables

CONST(NAME=E1+/M1+) and CONST(NAME=S1+/M1+) are the ratios of the electric quadrupole moment to magnetic dipole moment and Coulomb quadrupole moment to magnetic dipole moment, respectively (see paper). Resonance only.

CONST(NAME=E1+/M1+) and CONST(NAME=S1+/M1+) are the ratios of the electric quadrupole moment to magnetic dipole moment and Coulomb quadrupole moment to magnetic dipole moment, respectively (see paper). Resonance only.

CONST(NAME=E1+/M1+) and CONST(NAME=S1+/M1+) are the ratios of the electric quadrupole moment to magnetic dipole moment and Coulomb quadrupole moment to ma gnetic dipole moment, respectively (see paper). Resonance + background.

More…

Measurement of the neutral weak form factors of the proton.

The HAPPEX collaboration Aniol, K.A. ; Armstrong, D.S. ; Baylac, M. ; et al.
Phys.Rev.Lett. 82 (1999) 1096-1100, 1999.
Inspire Record 478059 DOI 10.17182/hepdata.31319

We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from the proton. The kinematic point (theta_lab = 12.3 degrees and Q^2=0.48 (GeV/c)^2) is chosen to provide sensitivity, at a level that is of theoretical interest, to the strange electric form factor G_E^s. The result, A=-14.5 +- 2.2 ppm, is consistent with the electroweak Standard Model and no additional contributions from strange quarks. In particular, the measurement implies G_E^s + 0.39G_M^s = 0.023 +- 0.034 (stat) +- 0.022 (syst) +- 0.026 (delta G_E^n), where the last uncertainty arises from the estimated uncertainty in the neutron electric form factor.

1 data table

Longitudinally polarized beam. C=L and C=R means left- and right polarization. The second systematic uncertainty arises from the estimated uncertainty inthe neutron electromagnetic from factor.


A measurement of the electric form-factor of the neutron through d(pol.)(e(pol.),e' n)p at Q**2 = 0.5-(GeV/c)**2.

The E93026 collaboration Zhu, H. ; Ahmidouch, A. ; Anklin, H. ; et al.
Phys.Rev.Lett. 87 (2001) 081801, 2001.
Inspire Record 556212 DOI 10.17182/hepdata.31418

We report the first measurement of the neutron electric form factor $G_E^n$ via $\vec{d}(\vec{e},e'n)p$ using a solid polarized target. $G_E^n$ was determined from the beam-target asymmetry in the scattering of longitudinally polarized electrons from polarized deuterated ammonia, $^{15}$ND$_3$. The measurement was performed in Hall C at Thomas Jefferson National Accelerator Facility (TJNAF) in quasi free kinematics with the target polarization perpendicular to the momentum transfer. The electrons were detected in a magnetic spectrometer in coincidence with neutrons in a large solid angle segmented detector. We find $G_E^n = 0.04632\pm0.00616 (stat.) \pm0.00341 (syst.)$ at $Q^2 = 0.495$ (GeV/c)$^2$.

1 data table

No description provided.


Measurement of the proton's neutral weak magnetic form factor.

The SAMPLE collaboration Mueller, B. ; Beck, D.H. ; Beise, E.J. ; et al.
Phys.Rev.Lett. 78 (1997) 3824-3827, 1997.
Inspire Record 440739 DOI 10.17182/hepdata.31349

We report the first measurement of the parity-violating asymmetry in elastic electron scattering from the proton. The asymmetry depends on the neutral weak magnetic form factor of the proton which contains new information on the contribution of strange quark-antiquark pairs to the magnetic moment of the proton. We obtain the value $G_M~Z= 0.34 \pm 0.09 \pm 0.04 \pm 0.05$ n.m. at $Q~2=0.1$ (GeV/c)${}~2$.

1 data table

Polarized beam. FORMFACTOR(NAME=GZM) = (1/4)*(GM_P-GM_N) - SIN2TW*GM_P - (1/4)*GM_S, whereFORMFACTOR(NAME=GM_S) is the strange quark contribution. FORMFACTOR(NAME=GZM) and FORMFACTOR(NAME=GM_S) are in nucleon magnetic FF.


Quasielastic Electron-Deuteron Scattering Between q$^2$=18f$^{-2}$ and 100f$^{-2}$

Albrecht, W. ; Behrend, H.J. ; Dorner, H. ; et al.
Phys.Lett.B 26 (1968) 642-644, 1968.
Inspire Record 53149 DOI 10.17182/hepdata.29312

Quasielastic e-d scattering measurements were performed up to q 2 = 100 fm −2 . Only the electron was detected. The ratio R= ( d 2 ω d Ω d E′) ed d ω d Ω) ep was measured at the quasielastic peak; the magnetic form factor G M N of the neutron was deduced using the assumption G E N = 0.

2 data tables

No description provided.

CONST(NAME=MU) is the magnetic moment. The magnetic formfarctor (GM) is evaluated ander assumption of GE=0.


The transverse asymmetry A(T') from quasielastic polarized He-3(pol.)(e(pol.),e') process and the neutron magnetic form factor.

Xu, W. ; Dutta, D. ; Xiong, F. ; et al.
Phys.Rev.Lett. 85 (2000) 2900-2904, 2000.
Inspire Record 531416 DOI 10.17182/hepdata.31474

We have measured the transverse asymmetry from inclusive scattering of longitudinally polarized electrons from polarized 3He nuclei at quasi-elastic kinematics in Hall A at Jefferson Lab with high statistical and systematic precision. The neutron magnetic form factor was extracted based on Faddeev calculations with an experimental uncertainty of less than 2 %.

1 data table

Ratio of neutron magnetic form-factor to dipole value.