Date

$\gamma$ and $\pi^0$ Production in $\bar{p} p$ Interactions at 22.4-{GeV}/$c$

The Dubna-Alma Ata-Helsinki-Moscow-Prague-Tbilisi collaboration Batyunya, B.V. ; Boguslavsky, I.V. ; Gramenitsky, I.M. ; et al.
Sov.J.Nucl.Phys. 32 (1980) 684, 1980.
Inspire Record 154051 DOI 10.17182/hepdata.18075

None

17 data tables

No description provided.

No description provided.

No description provided.

More…

$\rm{J}/\psi$ production at low transverse momentum in p+p and d+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 93 (2016) 064904, 2016.
Inspire Record 1420183 DOI 10.17182/hepdata.73526

We report on the measurement of $\rm{J}/\psi$ production in the dielectron channel at mid-rapidity (|y|<1) in p+p and d+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV from the STAR experiment at the Relativistic Heavy Ion Collider. The transverse momentum $p_{T}$ spectra in p+p for $p_{T}$ < 4 GeV/c and d+Au collisions for $p_{T}$ < 3 GeV/c are presented. These measurements extend the STAR coverage for $\rm{J}/\psi$ production in p+p collisions to low $p_{T}$. The $<p_{T}^{2}>$ from the measured $\rm{J}/\psi$ invariant cross section in p+p and d+Au collisions are evaluated and compared to similar measurements at other collision energies. The nuclear modification factor for $\rm{J}/\psi$ is extracted as a function of $p_{T}$ and collision centrality in d+Au and compared to model calculations using the modified nuclear Parton Distribution Function and a final-state $\rm{J}/\psi$ nuclear absorption cross section.

6 data tables

The mean square of $p_T$.

Nuclear absorption cross section.

The nuclear modicifation factor vs. $p_T$ for $J\psi$ with |y| < 1 in 0-100 percent central d+Au collisions.

More…

Azimuthal anisotropy and correlations in the hard scattering regime at RHIC.

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.Lett. 90 (2003) 032301, 2003.
Inspire Record 588226 DOI 10.17182/hepdata.98579

Azimuthal anisotropy ($v_2$) and two-particle angular correlations of high $p_T$ charged hadrons have been measured in Au+Au collisions at $\sqrt{s_{NN}}$=130 GeV for transverse momenta up to 6 GeV/c, where hard processes are expected to contribute significantly. The two-particle angular correlations exhibit elliptic flow and a structure suggestive of fragmentation of high $p_T$ partons. The monotonic rise of $v_2(p_T)$ for $p_T<2$ GeV/c is consistent with collective hydrodynamical flow calculations. At $\pT>3$ GeV/c a saturation of $v_2$ is observed which persists up to $p_T=6$ GeV/c.

4 data tables

$v_{2}$($p_{T}$) for different collision centralities. The errors are statistical only. The systematic uncertainties, which are highly correlated point-to-point, are $^{+5}_{-20}%$.

$v_{2}$($p_{T}$) for minimum-bias events (circles). The error bars represent the statistical errors and the caps show the systematic uncertainty. The data are compared with hydro+pQCD calculations [9] assuming the initial gluon density $dN^{g}/dy$ = 1000 (dashed line), 500 (dotted line), and 200 (dashed-dotted line). Also shown are pure hydrodynamical calculations [16] (solid line).

High $p_{T}$ azimuthal correlation functions for central events. Upper panel: Correlation function for $|\Delta\eta|$ < 0.5 (solid circles) and scaled correlation function for 0.5 < $|\Delta\eta|$ < 1.4 (open squares). Lower panel: Difference of the two correlation functions. Also shown are the fits to the data (described in the text).

More…

Central Mg + Mg collisions with Lambda production at a momentum of 4.3-GeV/c per nucleon

Avramenko, S.A. ; Abdurakhimov, A.U. ; Aksinenko, V.D. ; et al.
Sov.J.Nucl.Phys. 55 (1992) 400-407, 1992.
Inspire Record 319240 DOI 10.17182/hepdata.38716

None

2 data tables

CENTRAL COLLISIONS.

CENTRAL COLLISIONS.


Centrality dependence of pi+-, K+-, p and anti-p production from s(NN)**(1/2) = 130-GeV Au + Au collisions at RHIC.

The PHENIX collaboration Adcox, K. ; Adler, S.S. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 88 (2002) 242301, 2002.
Inspire Record 568437 DOI 10.17182/hepdata.19421

Identified pi^[+/-] K^[+/-], p and p-bar transverse momentum spectra at mid-rapidity in sqrt(s_NN)=130 GeV Au-Au collisions were measured by the PHENIX experiment at RHIC as a function of collision centrality. Average transverse momenta increase with the number of participating nucleons in a similar way for all particle species. The multiplicity densities scale faster than the number of participating nucleons. Kaon and nucleon yields per participant increase faster than the pion yields. In central collisions at high transverse momenta (p_T greater than 2 GeV/c), anti-proton and proton yields are comparable to the pion yields.

21 data tables

Transverse momentum spectra for PI+ in the midrapidity range for the centrality region 0 to 5 PCT. Errors are combined statistical and systematics.

Transverse momentum spectra for PI- in the midrapidity range for the centrality region 0 to 5 PCT. Errors are combined statistical and systematics.

Transverse momentum spectra for K+ in the midrapidity range for the centrality region 0 to 5 PCT. Errors are combined statistical and systematics.

More…

Characteristics of neutral pion production process in pi- Xe nuclear collisions at 3.5-GeV/c momentum

Strugalski, Z. ; Sredniawa, B. ; El-Sharkawy, S. ; et al.
JINR-E1-90-459, 1990.
Inspire Record 303170 DOI 10.17182/hepdata.39384

None

5 data tables

No description provided.

No description provided.

No description provided.

More…

Characteristics of the pion production and proton emission processes in proton - carbon nuclear collisions at 4.2-GeV/c momentum

Strugalski, Z. ; Sultanov, M. ;
JINR-E1-92-68, 1992.
Inspire Record 336351 DOI 10.17182/hepdata.39402

None

12 data tables

No description provided.

No description provided.

No description provided.

More…

Charged jet evolution and the underlying event in proton - anti-proton collisions at 1.8-TeV

The CDF collaboration Affolder, T. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.D 65 (2002) 092002, 2002.
Inspire Record 564673 DOI 10.17182/hepdata.42044

The growth and development of “charged particle jets” produced in proton-antiproton collisions at 1.8 TeV  are studied over a transverse momentum range from 0.5 GeV/c to 50 GeV/c. A variety of leading (highest transverse momentum) charged jet observables are compared with the QCD Monte Carlo models HERWIG, ISAJET, and PYTHIA. The models describe fairly well the multiplicity distribution of charged particles within the leading charged jet, the size of the leading charged jet, the radial distribution of charged particles and transverse momentum around the leading charged jet direction, and the momentum distribution of charged particles within the leading charged jet. The direction of the leading “charged particle jet” in each event is used to define three regions of η−φ space. The “toward” region contains the leading “charged particle jet,” while the “away” region, on the average, contains the away-side jet. The “transverse” region is perpendicular to the plane of the hard 2-to-2 scattering and is very sensitive to the “underlying event” component of the QCD Monte Carlo models. HERWIG, ISAJET, and PYTHIA with their default parameters do not describe correctly all the properties of the “transverse” region.

7 data tables

Average number of charged particles as a function of the relative azimuthal angle between the individual charged particle and the overall leading jet angle.

Average scalar PT sum of charged particles as a function of the relative azimuthal angle between the individual charged particle for 3 different lower limits of the leading jet PT. and the overall jet angle.

The average number of toward(DPHI < 60 DEG), transverse (DPHI 60 TO 120 DEG) and away (DPHI > 120 DEG) charged particles as a function of the PT of the leading charged jet. The data in this table are from the Min-Bias events.

More…

Charged-particle multiplicities in pp interactions at sqrt(s) = 900 GeV measured with the ATLAS detector at the LHC

The ATLAS collaboration Aad, G. ; Abat, E. ; Abbott, B. ; et al.
Phys.Lett.B 688 (2010) 21-42, 2010.
Inspire Record 849050 DOI 10.17182/hepdata.54850

The first measurements from proton-proton collisions recorded with the ATLAS detector at the LHC are presented. Data were collected in December 2009 using a minimum-bias trigger during collisions at a centre-of-mass energy of 900 GeV. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity, and the relationship between mean transverse momentum and charged-particle multiplicity are measured for events with at least one charged particle in the kinematic range |eta|<2.5 and pT>500 MeV. The measurements are compared to Monte Carlo models of proton-proton collisions and to results from other experiments at the same centre-of-mass energy. The charged-particle multiplicity per event and unit of pseudorapidity at eta = 0 is measured to be 1.333 +/- 0.003 (stat.) +/- 0.040 (syst.), which is 5-15% higher than the Monte Carlo models predict.

5 data tables

Average value of charged particle multiplicity per event and unit of pseudorapidity in the pseudorapidity range from -0.2 to 0.2.

Charged particle multiplicity as a function of pseudorapidity.

Charged particle multiplicity as a function of transverse momentum.

More…

Charged-particle multiplicities in pp interactions measured with the ATLAS detector at the LHC

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abdallah, J. ; et al.
New J.Phys. 13 (2011) 053033, 2011.
Inspire Record 882098 DOI 10.17182/hepdata.57077

Measurements are presented from proton-proton collisions at centre-of-mass energies of sqrt(s) = 0.9, 2.36 and 7 TeV recorded with the ATLAS detector at the LHC. Events were collected using a single-arm minimum-bias trigger. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the relationship between the mean transverse momentum and charged-particle multiplicity are measured. Measurements in different regions of phase-space are shown, providing diffraction-reduced measurements as well as more inclusive ones. The observed distributions are corrected to well-defined phase-space regions, using model-independent corrections. The results are compared to each other and to various Monte Carlo models, including a new AMBT1 PYTHIA 6 tune. In all the kinematic regions considered, the particle multiplicities are higher than predicted by the Monte Carlo models. The central charged-particle multiplicity per event and unit of pseudorapidity, for tracks with pT >100 MeV, is measured to be 3.483 +- 0.009 (stat) +- 0.106 (syst) at sqrt(s) = 0.9 TeV and 5.630 +- 0.003 (stat) +- 0.169 (syst) at sqrt(s) = 7 TeV.

41 data tables

Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.

Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 2360 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.

Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 7000 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.

More…