A MEASUREMENT OF THE ANTI-P P DIFFERENTIAL ELASTIC CROSS-SECTION AND OF THE COULOMB - NUCLEAR INTERFERENCE BETWEEN 353-MEV/C AND 578-MEV/C

Cresti, M. ; Peruzzo, L. ; Sartori, G. ;
Phys.Lett.B 132 (1983) 209-213, 1983.
Inspire Record 200209 DOI 10.17182/hepdata.30632

We have measured the p p differential elastic cross section at 8 momenta from 353 to 578 MeV/ c , determining, for each momentum, the ratio ρ of the real to imaginary parts of the elastic forward amplitude, the slope b of the elastic cross section and the total p p cross section σ. Our results are compared with previous experimental results and with theoretical predictions.

3 data tables

No description provided.

No description provided.

Numerical values supplied by M. Cresti.


Soft $\pi^- p$ and $p p$ Elastic Scattering in the Energy Range 30-{GeV} to 345-{GeV}

Burq, J.P. ; Chemarin, M. ; Chevallier, M. ; et al.
Nucl.Phys.B 217 (1983) 285-335, 1983.
Inspire Record 182455 DOI 10.17182/hepdata.7556

Differential cross sections for π − p and pp elastic scattering have been measured at incident momenta ranging from 30 to 345 GeV and in the t range 0.002 (GeV/ c ) 2 ⩽ | t | ⩽ 0.04 (GeV/ c ) 2 . From the analysis of the data, the ratio ϱ ( t = 0) of the real to the imaginary parts of the forward scattering amplitude was determined together with the logarithmic slope b of the diffraction cone.

13 data tables

No description provided.

No description provided.

No description provided.

More…

Experimental Results on $p p$ Forward Elastic Scattering and the Possibility of Universal Shrinkage of the Hadronic Diffraction Cone

Burq, J.P. ; Chemarin, M. ; Chevallier, M. ; et al.
Phys.Lett.B 109 (1982) 124-128, 1982.
Inspire Record 168617 DOI 10.17182/hepdata.31001

The differential cross section of pp scattering has been measured in the energy region 100–300 GeV and in the t -range 0.002 < | t | < 0.04 (GeV/| c ) 2 . The results on the real part of the scattering amplitude agrees with dispersion relation calculations. We also report on our determination of the slope parameter b together with an analysis of the world data of b for different hadrons and different t -values. It is shown that the data are consistent with the hypothesis of a universal shrinkage of the hadronic diffraction cone at high energies.

1 data table

FROM FITS TO D(SIG)/DT IN THE COULOMB-NUCLEAR INTERFERENCE REGION, USING TOTAL CROSS SECTION VALUES FROM A. S. CARROLL ET AL., PL 80B, 423 (1979). ERRORS INCLUDE STATISTICAL ERRORS AND ERRORS IN NORMALIZATION AND IN SIG.


PROTON - HELIUM ELASTIC SCATTERING FROM 45-GeV TO 400-GeV

Bujak, A. ; Devenski, P. ; Jenkins, E. ; et al.
JINR-E1-81-289, 1981.
Inspire Record 167719 DOI 10.17182/hepdata.39553

None

12 data tables

AVERAGED DATA FOR 44.9 AND 45.5 GEV.

No description provided.

No description provided.

More…

Measurements of $\pi^- p$ Forward Elastic Scattering at High-energies

Burq, J.P. ; Chemarin, M. ; Chevallier, M. ; et al.
Phys.Lett.B 109 (1982) 111, 1982.
Inspire Record 166767 DOI 10.17182/hepdata.31011

The differential cross section of π − p scattering has been measured in the energy region 100–345 GeV and in the t -range 0.002<| t |< 0.04 (GeV/ c ) 2 . The real part of the π − p scattering amplitude has been extracted from the data. The results show that the real part continues to increase with energy. The energy dependence of the slope parameter has also been determined. The shrinkage found expressed in terms of the slope of the pomeron trajectory is2 α ′ p =0.23±0.04 (GeV/ c ) −2 . This agrees with the energy dependence found at larger| t |-values.

1 data table

RE(AMP)/IM(AMP) (REAL/IMAG) AND SLOPE PARAMETERS DEDUCED FROM A FIT TO D(SIG)/DT IN T HE COULOMB INTERFERENCE REGION (-T = 0.002 TO 0.04 GEV**2).


Measurement of the Real to Imaginary Ratio of the $\bar{P} P$ Forward Amplitude at Beam Momenta Between 400-{GeV}/c and 730-{MeV}/c

Iwasaki, H. ; Aihara, H. ; Chiba, J. ; et al.
Phys.Lett.B 103 (1981) 247-250, 1981.
Inspire Record 170359 DOI 10.17182/hepdata.31184

Differential cross sections of p p forward elastic scattering were measured between 400 and 730 MeV/ c , and the real-to-imaginary ratio, ϱ, of the forward amplitude was deduced. We found that ρ increases from ∼ 0.1 to ∼ 0.4 in this momentum range. A dispersion-relation analysis shows the existence of a pole-like structure in the real part of the p p amplitude near threshold.

1 data table

REAL/IMAG RATIO OF FORWARD AMPLITUDE DETERMINED FROM FIT TO COULOMB-NUCLEARINTERFERENCE.


The Real Part of the Forward Elastic Nuclear Amplitude for p p, anti-p p, pi+ p, pi- p, K+ p, and K- p Scattering Between 70-GeV/c and 200-GeV/c

Fajardo, L.A. ; Majka, R. ; Marx, J.N. ; et al.
Phys.Rev.D 24 (1981) 46, 1981.
Inspire Record 152596 DOI 10.17182/hepdata.24028

We have measured the elastic cross section for pp, p¯p, π+p, π−p, K+p, and K−p scattering at incident momenta of 70, 100, 125, 150, 175, and 200 GeV/c. The range of the four-momentum transfer squared t varied with the beam momentum from 0.0016≤−t≤0.36 (GeV/c)2 at 200 GeV/c to 0.0018≤−t≤0.0625 (GeV/c)2 at 70 GeV/c. The conventional parametrization of the t dependence of the nuclear amplitude by a simple exponential in t was found to be inadequate. An excellent fit to the data was obtained by a parametrization motivated by the additive quark model. Using this parametrization we determined the ratio of the real to the imaginary part of the nuclear amplitude by the Coulomb-interference method.

1 data table

No description provided.


COULOMB - NUCLEAR INTERFERENCE IN PROTON DEUTERIUM ELASTIC SCATTERING AT 600-MEV AND THE REAL PART OF P N SCATTERING AMPLITUDE

Gardes, J. ; Jargeaix, B. ; Lefort, A. ; et al.
Nuovo Cim.A 61 (1981) 121-132, 1981.
Inspire Record 170137 DOI 10.17182/hepdata.37549

The differential cross-sections for the elastic scattering of protons on deuterium have been measured at 600 MeV in the |t| range between 0.003 and 0.030 (GeV/c)2. The results are analysed by using the Bethe and Glauber formalisms taking into account spin effects in deuterium wave function and nucleon-nucleon amplitudes. The ratio between the real and the imaginary parts of the spin-independent protonneutron amplitude αpn deduced from dispersion calculations and phase shift analysis is compared with experimental results.

1 data table

No description provided.


The Real Part of anti-p p Forward Elastic Scattering Amplitude at 0.7-GeV/c

Kaseno, H. ; Hamatsu, R. ; Kawano, K. ; et al.
Phys.Lett.B 61 (1976) 203-206, 1976.
Inspire Record 3400 DOI 10.17182/hepdata.27693

The differential cross sections of p p elastic scattering at 0.7 GeV/ c were obtained in the range 0.0018<| t |⩽0.0320 GeV 2 . From the interference between the Coulomb and the nuclear amplitude, the ratio of real to imaginary part of the forward nuclear amplitude was found to be +0.33±0.04.

3 data tables

No description provided.

No description provided.

FIT FOR FORWARD NUCLEAR AMPLITUDE IN COULOMB INTERFERENCE REGION.


K0(L) p ---> K0(S) p SCATTERING FROM 1-GeV/c TO 10-GeV/c

Brandenburg, G.W. ; Johnson, William B. ; Leith, David W.G.S. ; et al.
Phys.Rev.D 9 (1974) 1939, 1974.
Inspire Record 81133 DOI 10.17182/hepdata.21986

The differential cross sections for KL0p→KS0p scattering are presented in several momentum intervals between 1 and 10 GeVc. The data are strongly peaked in the forward direction, characteristic of a large s-channel helicity-nonflip scattering amplitude in this reaction, and a distinct break in the differential cross section occurs at |t|=0.3 GeV2. The phase of the forward scattering amplitude, φ, is consistent with being independent of momentum. The average value of the phase, φ=−133.9±4.0∘, corresponds to a Regge trajectory α(0)=0.49±0.05 in agreement with the canonical ρ, ω0 Regge intercept, α(0)∼0.5. However, this result disagrees with the Regge trajectory determined from the energy dependence of the forward cross section, α(0)=0.30±0.03, indicating a breaking of the Regge phase-energy relation. Comparisons of KL0p→KS0p and π−p→π0n scattering data reveal substantial differences in the energy dependence of the differential cross sections. Comparisons to KN charge-exchange data then suggest that direct-channel (absorption) effects may explain the differences in πN and KN channels.

22 data tables

No description provided.

No description provided.

No description provided.

More…