Version 3
Search for heavy Higgs bosons decaying into two tau leptons with the ATLAS detector using $pp$ collisions at $\sqrt{s}=13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
2020.
Inspire Record 1782650 DOI 10.17182/hepdata.93071

A search for heavy neutral Higgs bosons is performed using the LHC Run 2 data, corresponding to an integrated luminosity of 139 fb$^{-1}$ of proton$-$proton collisions at $\sqrt{s}=13$ TeV recorded with the ATLAS detector. The search for heavy resonances is performed over the mass range 0.2$-$2.5 TeV for the $\tau^+\tau^-$ decay with at least one $\tau$-lepton decaying into final states with hadrons. The data are in good agreement with the background prediction of the Standard Model. In the $M_{h}^{125}$ scenario of the Minimal Supersymmetric Standard Model, values of $\tan\beta>8$ and $\tan\beta>21$ are excluded at the 95% confidence level for $m_{A}=1.0$ TeV and $m_{A}=1.5$ TeV, respectively.

50 data tables

Observed and predicted mTtot distribution in the b-veto category of the 1l1tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table.The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.

Observed and predicted mTtot distribution in the b-tag category of the 1l1tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.

Observed and predicted mTtot distribution in the b-veto category of the 2tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.

More…

Measurement of the $\Upsilon$(1S) pair production cross section and search for resonances decaying to $\Upsilon$(1S)$\mu^+\mu^-$ in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
2020.
Inspire Record 1780982 DOI 10.17182/hepdata.93921

The fiducial cross section for $\Upsilon$(1S) pair production in proton-proton collisions at a center-of-mass energy of 13 TeV in the region where both $\Upsilon$(1S) mesons have an absolute rapidity below 2.0 is measured to be 79 $\pm$ 11 (stat) $\pm$ 6 (syst) $\pm$ 3 ($\mathcal{B}$) pb assuming the mesons are produced unpolarized. The last uncertainty corresponds to the uncertainty in the $\Upsilon$(1S) meson dimuon branching fraction. The measurement is performed in the final state with four muons using proton-proton collision data collected in 2016 by the CMS experiment at the LHC, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. This process serves as a standard model reference in a search for narrow resonances decaying to $\Upsilon$(1S)$\mu^+\mu^-$ in the same final state. Such a resonance could indicate the existence of a tetraquark that is a bound state of two b quarks and two $\bar{\mathrm{b}}$ antiquarks. The tetraquark search is performed for masses in the vicinity of four times the bottom quark mass, between 17.5 and 19.5 GeV, while a generic search for other resonances is performed for masses between 16.5 and 27 GeV. No significant excess of events compatible with a narrow resonance is observed in the data. Limits on the production cross section times branching fraction to four muons via an intermediate $\Upsilon$(1S) resonance are set as a function of the resonance mass.

9 data tables

The fiducial cross section measured in bins of the absolute rapidity difference between the mesons for events in the fiducial region with 2 Y(1S) with absolute rapidity less than 2.0.

The fiducial cross section measured in bins of the invariant mass of the two mesons for events in the fiducial region with 2 Y(1S) with absolute rapidity less than 2.0.

The fiducial cross section measured in bins of the transverse momentum of the meson pair for events in the fiducial region with 2 Y(1S) with absolute rapidity less than 2.0.

More…

Underlying Event properties in pp collisions at $\sqrt{s}$ = 13 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 2004 (2020) 192, 2020.
Inspire Record 1762350 DOI 10.17182/hepdata.94414

This article reports measurements characterizing the Underlying Event (UE) associated with hard scatterings at midrapidity ($ |\eta| < 0.8 $) in pp collisions at $\sqrt{s}$ = 13 TeV. The hard scatterings are identified by the leading particle, the charged particle with the highest transverse momentum ($p_{\rm{T}}^{\rm{leading}}$) in the event. Charged-particle numbers and summed transverse-momentum densities are measured in different azimuthal regions defined with respect to the leading particle direction: Toward, Transverse, and Away. The Toward and Away regions contain the fragmentation products of the hard scatterings in addition to the UE contribution, whereas particles in the Transverse region are expected to originate predominantly from the UE. The study is performed as a function of $p_{\rm{T}}^{\rm{leading}}$ with three different $p_{\rm{T}}$ thresholds for the associated particles, $p_{\rm{T}}^{\rm{track}}>$ 0.15, 0.5, and 1.0 GeV/$c$. The charged-particle density in the Transverse region rises steeply for low values of $p_{\rm{T}}^{\rm{leading}}$ and reaches a plateau. The results confirm the trend observed at lower collision energies that the charged-particle density in the Transverse region shows a stronger increase with $\sqrt{s}$ than the inclusive charged-particle density at midrapidity. The plateau in the Transverse region ($5 < p_{\rm{T}}^{\rm{leading}} < 40$ GeV/$c$) is further characterized by the probability distribution of its charged-particle multiplicity normalized to its average value (relative transverse activity, $R_{\rm{T}}$) and the mean transverse momentum as a function of $R_{\rm{T}}$. Experimental results are compared to model calculations obtained using PYTHIA 8 and EPOS LHC. The overall agreement between models and data is within 30%. These measurements provide new insights on the interplay between hard scatterings and the associated UE in pp collisions.

5 data tables

Fig. 10: $<p_{T}>$ in the Transverse region as a function of $R_{T}$ for $p_{T}^{track} >$ 0.15 GeV/$c$ and $|\\eta|<$ 0.8. Data (solid circles) are compared to the results of PYTHIA 8 and EPOS LHC calculations (lines). The open boxes represent the systematic uncertainties and vertical error bars indicate statistical uncertainties. No uncertainties are shown for the MC calculations. The bottom panel shows the ratio of the MC to data.

Fig. 3: Number density $N_{ch}$ (left) and $\\Sigma p_{T}$ (right) distributions as a function of $p_{T}^{leading}$ in Toward, Transverse, and Away regions for $p_{T}^{track} >$ 0.15 GeV/$c$. The shaded areas represent the systematic uncertainties and vertical error bars indicate statistical uncertainties.

Fig. A1: Number density $N_{ch}$ (left) and $\\Sigma p_{T}$ (right) distributions as a function of pleadingT and the comparisons to MC predictions in Toward (top), Transverse (middle), and Away (bottom) regions for $p_{T}^{track} >$ 0.5 GeV/$c$. The shaded areas in the upper panels represent the systematic uncertainties and vertical error bars indicate statistical uncertainties. In the lower panels, the shaded areas are the sum in quadrature of statistical and systematic uncertainties from the upper panels. No uncertainties are given for the MC calculations.

More…

Measurement of the cross section for electroweak production of a Z boson, a photon and two jets in proton-proton collisions at $\sqrt{s} =$ 13 TeV and constraints on anomalous quartic couplings

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
2020.
Inspire Record 1781935 DOI 10.17182/hepdata.93069

A measurement is presented of the cross section for electroweak production of a Z boson and a photon in association with two jets (Z$\gamma$jj) in proton-proton collisions. The Z boson candidates are selected through their decay into a pair of electrons or muons. The process of interest, electroweak Z$\gamma$jj production, is isolated by selecting events with a large dijet mass and a large pseudorapidity gap between the two jets. The measurement is based on data collected at the CMS experiment at $\sqrt{s} =$ 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The observed significance of the signal is 3.9 standard deviations, where a significance of 5.2 standard deviations is expected in the standard model. These results are combined with published results by CMS at $\sqrt{s} =$ 8 TeV, which leads to observed and expected respective significances of 4.7 and 5.5 standard deviations. From the 13 TeV data, a value is obtained for the signal strength of electroweak Z$\gamma$jj production and bounds are given on quartic vector boson interactions in the framework of dimension-eight effective field theory operators.

3 data tables

The measured EWK Zgamma+2j fiducial cross section. The uncertainty is the combined stastical uncertianty and the systematic uncertainty including experimental and theortical sources

The measured combined QCD-induced and EWK Zgamma+2j fiducial cross section. The uncertainty is the combined stastical uncertianty and the systematic uncertainty including experimental and theortical sources

aQGC limits on effective field theory parameters in EWK Zgamma events


Version 2
Search for squarks and gluinos in final states with same-sign leptons and jets using 139 fb$^{-1}$ of data collected with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
2019.
Inspire Record 1754675 DOI 10.17182/hepdata.91214

A search for supersymmetric partners of gluons and quarks is presented, involving signatures with jets and either two isolated leptons (electrons or muons) with the same electric charge, or at least three isolated leptons. A data sample of proton-proton collisions at $\sqrt{s}$ = 13 TeV recorded with the ATLAS detector at the Large Hadron Collider between 2015 and 2018, corresponding to a total integrated luminosity of 139 fb$^{-1}$, is used for the search. No significant excess over the Standard Model expectation is observed. The results are interpreted in simplified supersymmetric models featuring both R-parity conservation and R-parity violation, raising the exclusion limits beyond those of previous ATLAS searches to 1600 GeV for gluino masses and 750 GeV for bottom and top squark masses in these scenarios.

30 data tables

Best observed 95% CL exclusion contours selected from Rpc2L1b and Rpc2L2b on the lightest bottom squark and lightest neutralino masses in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.

Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2L0b, in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde g)$ = 1600 GeV, $m(\tilde \chi_1^\pm)$ = 1200 GeV, $m(\tilde \chi_2^0)$ = 1000 GeV and $m(\tilde \chi_1^0)$ = 800 GeV. Only statistical uncertainties are shown.

Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2L1b, in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde{b}^{}_1)$ = 850 GeV, $m(\tilde \chi_1^\pm)$ = 500 GeV and $m(\tilde \chi_1^0)$ = 400 GeV. Only statistical uncertainties are shown.

More…

Results on Total and Elastic Cross Sections in Proton-Proton Collisions at $\sqrt{s} = 200$ GeV

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
2020.
Inspire Record 1791591 DOI 10.17182/hepdata.94263

We report results on the total and elastic cross sections in proton-proton collisions at $\sqrt{s}=200$ GeV obtained with the Roman Pot setup of the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The elastic differential cross section was measured in the squared four-momentum transfer range $0.045 \leq -t \leq 0.135$ GeV$^2$. The value of the exponential slope parameter $B$ of the elastic differential cross section $d\sigma/dt \sim e^{-Bt}$ in the measured $-t$ range was found to be $B = 14.32 \pm 0.09 (stat.)^{\scriptstyle +0.13}_{\scriptstyle -0.28} (syst.)$ GeV$^{-2}$. The total cross section $\sigma_{tot}$, obtained from extrapolation of the $d\sigma/dt$ to the optical point at $-t = 0$, is $\sigma_{tot} = 54.67 \pm 0.21 (stat.) ^{\scriptstyle +1.28}_{\scriptstyle -1.38} (syst.)$ mb. We also present the values of the elastic cross section $\sigma_{el} = 10.85 \pm 0.03 (stat.) ^{\scriptstyle +0.49}_{\scriptstyle -0.41}(syst.)$ mb, the elastic cross section integrated within the STAR $t$-range $\sigma^{det}_{el} = 4.05 \pm 0.01 (stat.) ^{\scriptstyle+0.18}_{\scriptstyle -0.17}(syst.)$ mb, and the inelastic cross section $\sigma_{inel} = 43.82 \pm 0.21 (stat.) ^{\scriptstyle +1.37}_{\scriptstyle -1.44} (syst.)$ mb. The results are compared with the world data.

3 data tables

The proton-proton elastic differential cross-section $d\sigma_{el}/dt$ in the t-range 0.045<|t|<0.135 $GeV^{2}$ at sqrt(s) = 200 GeV.

The B-slope of the exponential fit A*exp(-B*|t|) to the single differential proton-proton elastic cross-section in the t-range 0.045<|t|<0.135 GeV**2 at sqrt(s) = 200 GeV.

The total, elastic and inelastic cross-sections for proton-proton scattering at sqrt(s)=200 GeV, the elastic cross-section measured in the t-range 0.045<|t|<0.135 GeV^2 and the value of the differential cross-section extrapolated to |t| = 0.


Observation of electroweak production of two jets and a $Z$-boson pair with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
2020.
Inspire Record 1792133 DOI 10.17182/hepdata.93015

Electroweak symmetry breaking explains the origin of the masses of elementary particles via their interactions with the Higgs field. Besides the measurements of the Higgs boson properties, the study of the scattering of massive vector bosons (with spin one) at the Large Hadron Collider allows to probe the nature of electroweak symmetry breaking with an unprecedented sensitivity. Among all processes related to vector-boson scattering, the electroweak production of two jets and a $Z$-boson pair is a rare and important one. This article reports on the first observation of this process using proton-proton collision data corresponding to an integrated luminosity of 139 fb$^{-1}$ recorded at a centre-of-mass energy of 13 TeV by the ATLAS detector. Two different final states originating from the decays of the $Z$-boson pair, one containing four charged leptons and the other containing two charged leptons and two neutrinos, are considered. The hypothesis of no electroweak production is rejected with a statistical significance of 5.5 $\sigma$, and the measured cross-section for electroweak production is consistent with the Standard Model prediction. In addition, cross-sections for inclusive production of a $Z$-boson pair and two jets are reported for the two final states.

1 data table

Measured and predicted fiducial cross-sections in both the lllljj and ll$\nu\nu$jj channels for the inclusive ZZjj processes. Uncertainties due to different sources are presented


Version 2
Measurement of the $Z(\rightarrow\ell^+\ell^-)\gamma$ production cross-section in $pp$ collisions at $\sqrt{s} =13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 2003 (2020) 054, 2020.
Inspire Record 1764342 DOI 10.17182/hepdata.89875

The production of a prompt photon in association with a $Z$ boson is studied in proton-proton collisions at a centre-of-mass energy $\sqrt{s} =$ 13 TeV. The analysis uses a data sample with an integrated luminosity of 139 fb$^{-1}$ collected by the ATLAS detector at the LHC from 2015 to 2018. The production cross-section for the process $pp \rightarrow \ell^+\ell^-\gamma+X$ ($\ell = e, \mu$) is measured within a fiducial phase-space region defined by kinematic requirements on the photon and the leptons, and by isolation requirements on the photon. An experimental precision of 2.9% is achieved for the fiducial cross-section. Differential cross-sections are measured as a function of each of six kinematic variables characterising the $\ell^+\ell^-\gamma$ system. The data are compared with theoretical predictions based on next-to-leading-order and next-to-next-to-leading-order perturbative QCD calculations. The impact of next-to-leading-order electroweak corrections is also considered.

7 data tables

The measured fiducial cross section. "Uncor" uncertainty includes all systematic uncertainties that are uncorrelated between electron and muon channels such as the uncertainty on the electron identification efficiency and the uncorrelated component of the background uncertainties. The parton-to-particle correction factor $C_{theory}$ is the ratio of the cross-section predicted by Sherpa LO samples at particle level within the fiducial phase-space region defined in Table 4 to the predicted cross-section at parton level within the same fiducial region but with the smooth-cone isolation prescription defined above replacing the particle-level photon isolation criterion, and with Born-level leptons in place of dressed leptons. This correction should be applied on fixed order parton-level calculations. The systematic uncertainty is evaluated from a comparison with the correction factor obtained using events generated with SHERPA 2.2.2 at NLO. In the case that the calculations are valid for dressed leptons, a modified correction factor excluding the Born-to-dressed lepton correction should be applied instead. This correction only takes into account the particle-level isolation criteria, and is provided separately here. The Sherpa 2.2.8 NLO cross-sections given below include a small contribution from EW $Z\gamma jj$ production of 4.57 fb.

The measured fiducial cross section vs $E_{\mathrm{T}}^\gamma$. The central values are provided along with the statistical and systematic uncertainties together with the sign information. The statistical and "Uncor" uncertainty should be treated as uncorrelated bin-to-bin, while the rest are correlated between bins, and they are written as signed NP variations. The parton-to-particle correction factor $C_{theory}$ is the ratio of the cross-section predicted by Sherpa LO samples at particle level within the fiducial phase-space region defined in Table 4 to the predicted cross-section at parton level within the same fiducial region but with the smooth-cone isolation prescription defined above replacing the particle-level photon isolation criterion, and with Born-level leptons in place of dressed leptons. This correction should be applied on fixed order parton-level calculations. The systematic uncertainty is evaluated from a comparison with the correction factor obtained using events generated with SHERPA 2.2.2 at NLO. In the case that the calculations are valid for dressed leptons, a modified correction factor excluding the Born-to-dressed lepton correction should be applied instead. This correction only takes into account the particle-level isolation criteria, and is provided separately here. The Sherpa 2.2.8 NLO cross-sections given below include a small contribution from EW $Z\gamma jj$ production.

The measured fiducial cross section vs $|\eta^\gamma|$. The central values are provided along with the statistical and systematic uncertainties together with the sign information. The statistical and "Uncor" uncertainty should be treated as uncorrelated bin-to-bin, while the rest are correlated between bins, and they are written as signed NP variations. The parton-to-particle correction factor $C_{theory}$ is the ratio of the cross-section predicted by Sherpa LO samples at particle level within the fiducial phase-space region defined in Table 4 to the predicted cross-section at parton level within the same fiducial region but with the smooth-cone isolation prescription defined above replacing the particle-level photon isolation criterion, and with Born-level leptons in place of dressed leptons. This correction should be applied on fixed order parton-level calculations. The systematic uncertainty is evaluated from a comparison with the correction factor obtained using events generated with SHERPA 2.2.2 at NLO. In the case that the calculations are valid for dressed leptons, a modified correction factor excluding the Born-to-dressed lepton correction should be applied instead. This correction only takes into account the particle-level isolation criteria, and is provided separately here. The Sherpa 2.2.8 NLO cross-sections given below include a small contribution from EW $Z\gamma jj$ production.

More…

Search for the electroweak diboson production in association with a high-mass dijet system in semileptonic final states in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev. D100 (2019) 032007, 2019.
Inspire Record 1735560 DOI 10.17182/hepdata.89647

This paper reports on a search for electroweak diboson (WW/WZ/ZZ) production in association with a high-mass dijet system, using data from proton-proton collisions at a center-of-mass energy of s=13  TeV. The data, corresponding to an integrated luminosity of 35.5  fb-1, were recorded with the ATLAS detector in 2015 and 2016 at the Large Hadron Collider. The search is performed in final states in which one boson decays leptonically, and the other boson decays hadronically. The hadronically decaying W/Z boson is reconstructed as either two small-radius jets or one large-radius jet using jet substructure techniques. The electroweak production of WW/WZ/ZZ in association with two jets is measured with an observed (expected) significance of 2.7 (2.5) standard deviations, and the fiducial cross section is measured to be 45.1±8.6(stat.)-14.6+15.9(syst.)  fb.

2 data tables

Summary of predicted and measured fiducial cross sections for EW $VVjj$ production. The three lepton channels are combined. For the measured fiducial cross sections in the merged and resolved categories, two signal-strength parameters are used in the combined fit, one for the merged category and the other one for the resolved category; while for the measured fiducial cross section in the inclusive fiducial phase space, a single signal-strength parameter is used. For the SM predicted cross section, the error is the theoretical uncertainty (theo.). For the measured cross section, the first error is the statistical uncertainty (stat.), and the second error is the systematic uncertainty (syst.).

Summary of predicted and measured fiducial cross sections for EW $VVjj$ production. in the three lepton channels. The measured values are obtained from a simultaneous fit where each lepton channel has its own signal-strength parameter, and in each lepton channel the same signal-strength parameter is applied to both the merged and resolved categories. For the SM predicted cross section, the error is the theoretical uncertainty (theo.). For the measured cross section, the first error is the statistical uncertainty (stat.), and the second error is the systematic uncertainty (syst.).


Version 2
Measurement of the Drell-Yan triple-differential cross section in $pp$ collisions at $\sqrt{s} = 8$ TeV

The ATLAS collaboration Aaboud, M. ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 1712 (2017) 059, 2017.
Inspire Record 1630886 DOI 10.17182/hepdata.77492

This paper presents a measurement of the triple-differential cross section for the Drell-Yan process Z/γ$^{*}$ → ℓ$^{+}$ ℓ$^{−}$ where ℓ is an electron or a muon. The measurement is performed for invariant masses of the lepton pairs, m$_{ℓℓ}$ , between 46 and 200 GeV using a sample of 20.2 fb$^{−1}$ of pp collisions data at a centre-of-mass energy of $ \sqrt{s}=8 $ TeV collected by the ATLAS detector at the LHC in 2012. The data are presented in bins of invariant mass, absolute dilepton rapidity, |y$_{ℓℓ}$|, and the angular variable cos θ$^{*}$ between the outgoing lepton and the incoming quark in the Collins-Soper frame. The measurements are performed in the range |y$_{ℓℓ}$ | < 2.4 in the muon channel, and extended to |y$_{ℓℓ}$ | < 3.6 in the electron channel. The cross sections are used to determine the Z boson forward-backward asymmetry as a function of |y$_{ℓℓ}$ | and m$_{ℓℓ}$ . The measurements achieve high-precision, below the percent level in the pole region, excluding the uncertainty in the integrated luminosity, and are in agreement with predictions. These precision data are sensitive to the parton distribution functions and the effective weak mixing angle.

6 data tables

Detailed breakdown of systematic uncertainties for the measurement in the central rapidity muon channel. Common systematic uncertainty on the luminosity measurment of 1.8% is not included. Correlated systematic uncertainties with the suffix :A should be treated as additive and with the suffix :M should be treated as multiplicative. The source 'sys,uncor' represents bin-to-bin uncorrelated systematic uncertainty. The cross sections are given at the Born QED level. 'C Dressed' represents the multiplicative correction factor to translate the cross sections to the dressed level with the cone radius of 0.1: SigmaDressed = C Dressed * SigmaBorn.

Detailed breakdown of systematic uncertainties for the measurement in the central rapidity electron channel. Common systematic uncertainty on the luminosity measurment of 1.8% is not included. Correlated systematic uncertainties with the suffix :A should be treated as additive and with the suffix :M should be treated as multiplicative. The source 'sys,uncor' represents bin-to-bin uncorrelated systematic uncertainty. The cross sections are given at the Born QED level. 'C Dressed' represents the multiplicative correction factor to translate the cross sections to the dressed level with the cone radius of 0.1: SigmaDressed = C Dressed * SigmaBorn.

Detailed breakdown of systematic uncertainties for the measurement in the forward rapidity electron channel. Common systematic uncertainty on the luminosity measurment of 1.8% is not included. Correlated systematic uncertainties with the suffix :A should be treated as additive and with the suffix :M should be treated as multiplicative. The source 'sys,uncor' represents bin-to-bin uncorrelated systematic uncertainty. The cross sections are given at the Born QED level. 'C Dressed' represents the multiplicative correction factor to translate the cross sections to the dressed level with the cone radius of 0.1: SigmaDressed = C Dressed * SigmaBorn.

More…

Measurement of the $\mathrm{t\bar{t}}\mathrm{b\bar{b}}$ production cross section in the all-jet final state in pp collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett. B803 (2020) 135285, 2020.
Inspire Record 1753720 DOI 10.17182/hepdata.91630

A measurement of the production cross section of top quark pairs in association with two b jets ($\mathrm{t\bar{t}}\mathrm{b\bar{b}}$) is presented using data collected in proton-proton collisions at $\sqrt{s} =$ 13 TeV by the CMS detector at the LHC corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The cross section is measured in the all-jet decay channel of the top quark pair by selecting events containing at least eight jets, of which at least two are identified as originating from the hadronization of b quarks. A combination of multivariate analysis techniques is used to reduce the large background from multijet events not containing a top quark pair, and to help discriminate between jets originating from top quark decays and other additional jets. The cross section is determined for the total phase space to be 5.5 $\pm$ 0.3 (stat)${}^{+1.6}_{-1.3}$ (syst) pb and also measured for two fiducial $\mathrm{t\bar{t}}\mathrm{b\bar{b}}$ definitions. The measured cross sections are found to be larger than theoretical predictions by a factor of 1.5-2.4, corresponding to 1-2 standard deviations.

1 data table

The measured cross sections. The first uncertainty is statistical, the second uncertianty is the systematic.


Multiplicity dependence of (multi-)strange hadron production in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adhya, Souvik Priyam ; et al.
Eur.Phys.J. C80 (2020) 167, 2020.
Inspire Record 1748157 DOI 10.17182/hepdata.93535

The production rates and the transverse momentum distribution of strange hadrons at mid-rapidity ($\ |y\ | < 0.5$) are measured in proton-proton collisions at $\sqrt{s}$ = 13 TeV as a function of the charged particle multiplicity, using the ALICE detector at the LHC. It is found that the production rates of $\rm{K}^{0}_{S}$, $\Lambda$, $\Xi$, and $\Omega$ increase with the multiplicity faster than what is reported for inclusive charged particles. The increase is found to be more pronounced for hadrons with a larger strangeness content. Possible auto-correlations between the charged particles and the strange hadrons are evaluated by measuring the event-activity with charged particle multiplicity estimators covering different pseudorapidity regions. The yields of strange hadrons are found to depend only on the mid-rapidity multiplicity for charged particle multiplicity estimators selecting in the forward region, which turn out to be more directly related to the number of Multiple Parton Interactions. Several features of the data are reproduced qualitatively by general purpose QCD Monte Carlo models that take into account the effect of densely-packed QCD strings in high multiplicity collisions. However, none of the tested models reproduce the data quantitatively. This work corroborates and extends the ALICE findings on strangeness production in proton-proton collisions at 7 TeV.

59 data tables

$K^{0}_{S}$ transverse momentum spectrum - V0M multiplicity classes. Total systematic uncertainties include both correlated and uncorrelated uncertainties across multiplicity. Uncorrelated systematic originating from the multiplicity dependence of the efficiency (2%) is not included.

$\Lambda+\bar{\Lambda}$ transverse momentum spectrum - V0M multiplicity classes. Total systematic uncertainties include both correlated and uncorrelated uncertainties across multiplicity. Uncorrelated systematic originating from the multiplicity dependence of the efficiency (2%) is not included.

$\Xi^{-}+\bar{\Xi^{+}}$ transverse momentum spectrum - V0M multiplicity classes. Total systematic uncertainties include both correlated and uncorrelated uncertainties across multiplicity. Uncorrelated systematic originating from the multiplicity dependence of the efficiency (2%) is not included.

More…

Search for a standard model-like Higgs boson in the mass range between 70 and 110 GeV in the diphoton final state in proton-proton collisions at $\sqrt{s}=$ 8 and 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett. B793 (2019) 320-347, 2019.
Inspire Record 1704494 DOI 10.17182/hepdata.91266

The results of a search for a standard model-like Higgs boson in the mass range between 70 and 110 GeV decaying into two photons are presented. The analysis uses the data set collected with the CMS experiment in proton-proton collisions during the 2012 and 2016 LHC running periods. The data sample corresponds to an integrated luminosity of 19.7 (35.9)fb−1 at s=8 (13) TeV. The expected and observed 95% confidence level upper limits on the product of the cross section and branching fraction into two photons are presented. The observed upper limit for the 2012 (2016) data set ranges from 129 (161) fb to 31 (26) fb. The statistical combination of the results from the analyses of the two data sets in the common mass range between 80 and 110 GeV yields an upper limit on the product of the cross section and branching fraction, normalized to that for a standard model-like Higgs boson, ranging from 0.7 to 0.2, with two notable exceptions: one in the region around the Z boson peak, where the limit rises to 1.1, which may be due to the presence of Drell–Yan dielectron production where electrons could be misidentified as isolated photons, and a second due to an observed excess with respect to the standard model prediction, which is maximal for a mass hypothesis of 95.3 GeV with a local (global) significance of 2.8 (1.3) standard deviations.

7 data tables

Expected and observed exclusion limits (95% CL, in the asymptotic approximation) on the product of the production cross section and branching fraction into two photons for an additional Higgs boson, relative to the expected SM-like value, from the analysis of the 8 and 13 TeV data. The inner and outer bands indicate the regions containing the distribution of limits located within $pm 1 and 2 $sigma , respectively, of the expectation under the background-only hypothesis.

Expected and observed exclusion limits (95% CL, in the asymptotic approximation) on the product of the production cross section and branching fraction into two photons for an additional SM-like Higgs boson, from the analysis of the 8 TeV data. The inner and outer bands indicate the regions containing the distribution of limits located within 1 and 2 $sigma, respectively, of the expectation under the background-only hypothesis. The corresponding theoretical prediction for the product of the cross section and branching fraction into two photons for an additional SM-like Higgs boson is shown as a solid line with a hatched band, indicating its uncertainty

Expected and observed exclusion limits (95% CL, in the asymptotic approximation) on the product of the production cross section and branching fraction into two photons for an additional SM-like Higgs boson, from the analysis of the 13 TeV data. The inner and outer bands indicate the regions containing the distribution of limits located within 1 and 2 $sigma, respectively, of the expectation under the background-only hypothesis. The corresponding theoretical prediction for the product of the cross section and branching fraction into two photons for an additional SM-like Higgs boson is shown as a solid line with a hatched band, indicating its uncertainty

More…

Search for supersymmetry in proton-proton collisions at 13 TeV in final states with jets and missing transverse momentum

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 1910 (2019) 244, 2019.
Inspire Record 1749379 DOI 10.17182/hepdata.90835

Results are reported from a search for supersymmetric particles in the final state with multiple jets and large missing transverse momentum. The search uses a sample of proton-proton collisions at $ \sqrt{s} $ = 13 TeV collected with the CMS detector in 2016–2018, corresponding to an integrated luminosity of 137 fb$^{−1}$, representing essentially the full LHC Run 2 data sample. The analysis is performed in a four-dimensional search region defined in terms of the number of jets, the number of tagged bottom quark jets, the scalar sum of jet transverse momenta, and the magnitude of the vector sum of jet transverse momenta. No significant excess in the event yield is observed relative to the expected background contributions from standard model processes. Limits on the pair production of gluinos and squarks are obtained in the framework of simplified models for supersymmetric particle production and decay processes. Assuming the lightest supersymmetric particle to be a neutralino, lower limits on the gluino mass as large as 2000 to 2310 GeV are obtained at 95% confidence level, while lower limits on the squark mass as large as 1190 to 1630 GeV are obtained, depending on the production scenario.

90 data tables

Exclusion limits assuming the approximate-NNLO+NNLL cross sections

Exclusion limits assuming the approximate-NNLO+NNLL cross sections

Exclusion limits assuming the approximate-NNLO+NNLL cross sections

More…

Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in $\sqrt{s}$ = 13 TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
2019.
Inspire Record 1771533 DOI 10.17182/hepdata.91127

A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell $W$ and $Z$ bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of $\sqrt{s}$ = 13 TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb$^{-1}$. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015-2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full dataset are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV.

29 data tables

Signal acceptance in SR-ISR, for signals with $m(\widetilde{\chi}^{\pm}_{1}/\widetilde{\chi}^{0}_{2}) - m\widetilde{\chi}^{0}_{1} \geq 100$ GeV.

Signal acceptance in SR-ISR, for signals with $m(\widetilde{\chi}^{\pm}_{1}/\widetilde{\chi}^{0}_{2}) - m\widetilde{\chi}^{0}_{1} < 100$ GeV.

Signal acceptance in SR-low, for signals with $m(\widetilde{\chi}^{\pm}_{1}/\widetilde{\chi}^{0}_{2}) - m\widetilde{\chi}^{0}_{1} \geq 100$ GeV.

More…

Search for new resonances in mass distributions of jet pairs using 139 fb$^{-1}$ of $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
2019.
Inspire Record 1759712 DOI 10.17182/hepdata.91126

A search for new resonances decaying into a pair of jets is reported using the dataset of proton-proton collisions recorded at $\sqrt{s}=13$ TeV with the ATLAS detector at the Large Hadron Collider between 2015 and 2018, corresponding to an integrated luminosity of 139 fb$^{-1}$. The distribution of the invariant mass of the two leading jets is examined for local excesses above a data-derived estimate of the Standard Model background. In addition to an inclusive dijet search, events with jets identified as containing $b$-hadrons are examined specifically. No significant excess of events above the smoothly falling background spectra is observed. The results are used to set cross-section upper limits at 95% confidence level on a range of new physics scenarios. Model-independent limits on Gaussian-shaped signals are also reported. The analysis looking at jets containing $b$-hadrons benefits from improvements in the jet flavour identification at high transverse momentum, which increases its sensitivity relative to the previous analysis beyond that expected from the higher integrated luminosity.

24 data tables

The probability of an event to pass the b-tagging requirement after the rest of the event selection, shown as a function of the resonance mass and for the 1b and 2b analysis categories.

Dijet invariant mass distribution for the inclusive category with |y*| < 0.6.

Dijet invariant mass distribution for the inclusive category with |y*| < 1.2.

More…

Measurement of prompt D$^{0}$, D$^{+}$, D$^{*+}$, and $ {\mathrm{D}}_{\mathrm{S}}^{+} $ production in p–Pb collisions at $ \sqrt{{\mathrm{s}}_{\mathrm{NN}}} $ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adhya, Souvik Priyam ; et al.
JHEP 1912 (2019) 092, 2019.
Inspire Record 1738950 DOI 10.17182/hepdata.93013

The measurement of the production of prompt D$^0$, D$^+$, D$^{*+}$, and D$^+_s$ mesons in proton$-$lead (p$-$Pb) collisions at the centre-of-mass energy per nucleon pair of $\sqrt{s_{\rm NN}}$ = 5.02 TeV, with an integrated luminosity of $292\pm 11$ $\mu$b$^{-1}$, are reported. Differential production cross sections are measured at mid-rapidity ($-0.96<y_{\rm cms}<0.04$) as a function of transverse momentum ($p_{\rm T}$) in the intervals $0< p_{\rm T} < 36$ GeV/$c$ for D$^0$, $1< p_{\rm T} <36$ GeV/$c$ for D$^+$ and D$^{*+}$, and $2< p_{\rm T} <24$ GeV/$c$ for D$^+_s$ mesons. For each species, the nuclear modification factor $R_{\rm pPb}$ is calculated as a function of $p_{\rm T}$ using a proton-proton (pp) reference measured at the same collision energy. The results are compatible with unity in the whole $p_{\rm T}$ range. The average of the non-strange D mesons $R_{\rm pPb}$ is compared with theoretical model predictions that include initial-state effects and parton transport model predictions. The $p_{\rm T}$ dependence of the D$^0$, D$^+$, and D$^{*+}$ nuclear modification factors is also reported in the interval $1< p_{\rm T} < 36$ GeV/$c$ as a function of the collision centrality, and the central-to-peripheral ratios are computed from the D-meson yields measured in different centrality classes. The results are further compared with charged-particle measurements and a similar trend is observed in all the centrality classes. The ratios of the $p_{\rm T}$-differential cross sections of D$^0$, D$^+$, D$^{*+}$, and D$^+_s$ mesons are also reported. The D$^+_s$ and D$^+$ yields are compared as a function of the charged-particle multiplicity for several $p_{\rm T}$ intervals. No modification in the relative abundances of the four species is observed with respect to pp collisions within the statistical and systematic uncertainties.

27 data tables

Ratio of prompt Ds+ over D+ production cross section as a function of the charged particle pseudorapidity density in p-Pb collisions at $\mathbf{\sqrt{{\textit s}_{\rm NN}}~=~5.02~TeV}$.

Ratio of prompt Ds+ over D+ production cross section as a function of the charged particle pseudorapidity density in p-Pb collisions at $\mathbf{\sqrt{{\textit s}_{\rm NN}}~=~5.02~TeV}$.

Ratio of prompt Ds+ over D+ production cross section as a function of the charged particle pseudorapidity density in p-Pb collisions at $\mathbf{\sqrt{{\textit s}_{\rm NN}}~=~5.02~TeV}$.

More…

Measurement of the total and differential inclusive $B^+$ hadron cross sections in pp collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett. B771 (2017) 435-456, 2017.
Inspire Record 1485195 DOI 10.17182/hepdata.85745

The differential cross sections for inclusive production of B+ hadrons are measured as a function of the B+ transverse momentum pTB and rapidity yB in pp collisions at a centre-of-mass energy of 13 TeV, using data collected by the CMS experiment that correspond to an integrated luminosity of 48.1 pb −1 . The measurement uses the exclusive decay channel B+→J/ψK+ , with J/ψ mesons that decay to a pair of muons. The results show a reasonable agreement with theoretical calculations within the uncertainties.

7 data tables

B+ differential production cross sections DSIG/DPT for |yB|< 1.45 or |yB|< 2.1, at 13 TeV. The calculations from FONLL and PYTHIA are provided. The ratio of the data at 13 TeV to the FONLL predictions and the ratios of the PYTHIA to the FONLL calculations are also given.

B+ differential production cross sections DSIG/DETARAP for 10 < ptB < 100 GeV or 17 < ptB < 100 GeV, at 13 TeV. The calculations from FONLL and PYTHIA are provided. The ratio of the data at 13 TeV to the FONLL predictions and the ratios of the PYTHIA to the FONLL calculations are also given.

Ratios of B+ differential production cross sections at 13 TeV and at 7 TeV as a function of ptB for |yB|< 1.45 or |yB|< 2.1. The calculations from FONLL and PYTHIA are provided as well.

More…

Search for physics beyond the standard model in multilepton final states in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
2019.
Inspire Record 1764474 DOI 10.17182/hepdata.91969

A search for physics beyond the standard model in events with at least three charged leptons (electrons or muons) is presented. The data sample corresponds to an integrated luminosity of 137 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} =$ 13 TeV, collected with the CMS detector at the LHC in 2016-2018. The two targeted signal processes are pair production of type-III seesaw heavy fermions and production of a light scalar or pseudoscalar boson in association with a pair of top quarks. The heavy fermions may be manifested as an excess of events with large values of leptonic transverse momenta or missing transverse momentum. The light scalars or pseudoscalars may create a localized excess in the dilepton mass spectra. The results exclude heavy fermions of the type-III seesaw model for masses below 880 GeV at 95% confidence level in the scenario of equal branching fractions to each lepton flavor. This is the most restrictive limit on the flavor-democratic scenario of the type-III seesaw model to date. Assuming a Yukawa coupling of unit strength to top quarks, branching fractions of new scalar (pseudoscalar) bosons to dielectrons or dimuons above 0.004 (0.03) and 0.04 (0.03) are excluded at 95% confidence level for masses in the range 15-75 and 108-340 GeV, respectively. These are the first limits in these channels on an extension of the standard model with scalar or pseudoscalar particles.

58 data tables

The 95% confidence level exclusion limits for the flavor-democratic scenario on the total production cross section of heavy fermion pairs.

The dimuon $M_{OSSF}^{20}$ distribution in the 4L($\mu\mu$) 0B, $S_{T}$<400 GeV signal region. The last bin does not contain the overflow events. The signal is shown with $g_{t}^2\mathcal{B}(\phi - {\mu\mu})$=0.05.

The dimuon $M_{OSSF}^{300}$ distribution in the 4L($\mu\mu$) 0B, $S_{T}$<400 GeV signal region. The last bin does not contain the overflow events. The signal is shown with $g_{t}^2\mathcal{B}(\phi - {\mu\mu})$=0.05.

More…

Search for a heavy pseudoscalar Higgs boson decaying into a 125 GeV Higgs boson and a Z boson in final states with two tau and two light leptons at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
2019.
Inspire Record 1761088 DOI 10.17182/hepdata.90685

A search is performed for a pseudoscalar Higgs boson, A, decaying into a 125 GeV Higgs boson h and a Z boson. The h boson is specifically targeted in its decay into a pair of tau leptons, while the Z boson decays into a pair of electrons or muons. A data sample of proton-proton collisions collected by the CMS experiment at the LHC at $\sqrt{s} =$ 13 TeV is used, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. No excess above the standard model background expectations is observed in data. A model-independent upper limit is set on the product of the gluon fusion production cross section for the A boson and the branching fraction to Zh$\to\ell\ell\tau\tau$. The observed upper limit at 95% confidence level ranges from 27 to 5 fb for A boson masses from 220 to 400 GeV, respectively. The results are used to constrain the extended Higgs sector parameters for two benchmark scenarios of the minimal supersymmetric standard model.

1 data table

The expected and observed 95% CL model-independent upper limits on the product of the cross section and branching fraction for the A boson (pseudoscalar Higgs boson).


Measurement of the $ Z\gamma \to \nu \overline{\nu}\gamma $ production cross section in pp collisions at $ \sqrt{s}=13 $ TeV with the ATLAS detector and limits on anomalous triple gauge-boson couplings

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 1812 (2018) 010, 2018.
Inspire Record 1698006 DOI 10.17182/hepdata.83965

The production of Z bosons in association with a high-energy photon (Zγ production) is studied in the neutrino decay channel of the Z boson using pp collisions at $ \sqrt{s}=13 $ TeV. The analysis uses a data sample with an integrated luminosity of 36.1fb$^{−1}$ collected by the ATLAS detector at the LHC in 2015 and 2016. Candidate Zγ events with invisible decays of the Z boson are selected by requiring significant transverse momentum (p$_{T}$) of the dineutrino system in conjunction with a single isolated photon with large transverse energy (E$_{T}$). The rate of Zγ production is measured as a function of photon E$_{T}$, dineutrino system p$_{T}$ and jet multiplicity. Evidence of anomalous triple gauge-boson couplings is sought in Zγ production with photon E$_{T}$ greater than 600 GeV. No excess is observed relative to the Standard Model expectation, and upper limits are set on the strength of ZZγ and Zγγ couplings.

8 data tables

Measured integrated cross sections for the $Z\gamma$ process for neutrino final states at $\sqrt{s} = 13$ TeV in the extended fiducial region defined in the paper.

Measured differential cross sections for the $pp \rightarrow \nu\bar{\nu}\gamma$ process at $\sqrt{s} = 13$ TeV as a function of photon $E_{T}$ in the inclusive $N_{jets} \geq 0$ extended fiducial region defined in the paper.

Measured differential cross sections for the $pp \rightarrow \nu\bar{\nu}\gamma$ process at $\sqrt{s} = 13$ TeV as a function of photon $E_{T}$ in the exclusive $N_{jets} = 0$ extended fiducial region defined in the paper.

More…

Search for associated production of a Higgs boson and a single top quark in proton-proton collisions at $\sqrt{s} =$ TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev. D99 (2019) 092005, 2019.
Inspire Record 1704945 DOI 10.17182/hepdata.90686

A search is presented for the production of a Higgs boson in association with a single top quark, based on data collected in 2016 by the CMS experiment at the LHC at a center-of-mass energy of 13 TeV, which corresponds to an integrated luminosity of 35.9  fb-1. The production cross section for this process is highly sensitive to the absolute values of the top quark Yukawa coupling, yt; the Higgs boson coupling to vector bosons, gHVV; and, uniquely, their relative sign. Analyses using multilepton signatures, targeting H→WW, H→ττ, and H→ZZ decay modes, and signatures with a single lepton and a bb¯ pair, targeting the H→bb¯ decay, are combined with a reinterpretation of a measurement in the H→γγ channel to constrain yt. For a standard model–like value of gHVV, the data favor positive values of yt and exclude values of yt below about -0.9ytSM.

2 data tables

Expected and observed 95% CL upper limits on the tH production cross section times $H \to WW/ZZ/\tau\tau/b\bar{b}/\gamma\gamma$ branching fraction for a scenario of inverted couplings ($\kappa_t=-1.0$ and $\kappa_V=1.0$, top rows), vanishing top quark Yukawa coupling ($\kappa_t=0.0$ and $\kappa_V=1.0$, middle rows), and for an SM-like signal ($\kappa_t=1.0$ and $\kappa_V=1.0$, bottom rows), in pb. The Higgs to vector boson couplings is considered to be SM-like. The expected limit is calculated on a background-only data set, i.e., without tH contribution, but including a coupling dependent contribution from the ttH production. The ttH normalization is kept fixed in the fit, while the tH cross section is allowed to float. Limits can be compared to the expected product of tH cross sections and branching fractions of 0.83, 0.28, and 0.077 pb for the inverted top quark Yukawa coupling, the vanishing top-Yukawa and the SM-like scenario.

Observed and expected 95% CL upper limit on the tH cross section times combined $HH \to WW/ZZ/\tau\tau/b\bar{b}/\gamma\gamma$ branching fraction for different values of the top-Yukawa coupling modifier, assuming SM-like Higgs to vector boson couplings. The expected limit is calculated on a background-only data set, i.e., without tH contribution, but including a coupling dependent contribution from the ttH production. The ttH normalization is kept fixed in the fit, while the tH cross section is allowed to float.


Measurement of $W^{\pm}Z$ production cross sections and gauge boson polarisation in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J. C79 (2019) 535, 2019.
Inspire Record 1720438 DOI 10.17182/hepdata.83701

This paper presents measurements of $W^{\pm }Z$ production cross sections in pp collisions at a centre-of-mass energy of 13  $\text {TeV}$ . The data were collected in 2015 and 2016 by the ATLAS experiment at the Large Hadron Collider, and correspond to an integrated luminosity of $36.1~\hbox {fb}^{-1}$ . The $W^{\pm }Z$ candidate events are reconstructed using leptonic decay modes of the gauge bosons into electrons and muons. The measured inclusive cross section in the detector fiducial region for a single leptonic decay mode is $\sigma _{W^\pm Z \rightarrow \ell ^{'} \nu \ell \ell }^{\text {fid.}} = 63.7 \, \pm ~1.0~\text {(stat.)} \, \pm ~2.3~\text {(syst.)} \, \pm ~1.4~\text {(lumi.)}$  fb, reproduced by the next-to-next-to-leading-order Standard Model prediction of $61.5^{+1.4-1.3}$  fb. Cross sections for $W^+Z$ and $W^-Z$ production and their ratio are presented as well as differential cross sections for several kinematic observables. An analysis of angular distributions of leptons from decays of W and Z bosons is performed for the first time in pair-produced events in hadronic collisions, and integrated helicity fractions in the detector fiducial region are measured for the W and Z bosons separately. Of particular interest, the longitudinal helicity fraction of pair-produced vector bosons is also measured.

24 data tables

The measured $W^{\pm}Z$ fiducial cross section in the four channels and their combination. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity uncertainty, the second is the modelling uncertainty, the third is luminosity uncertainty.

The measured $W^{+}Z$ fiducial cross section in the four channels and their combination. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity uncertainty, the second is the modelling uncertainty, the third is luminosity uncertainty.

The measured $W^{-}Z$ fiducial cross section in the four channels and their combination. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity uncertainty, the second is the modelling uncertainty, the third is luminosity uncertainty.

More…

Measurement of charged jet cross section in pp collisions at ${\sqrt{s}=5.02}$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adhya, Souvik Priyam ; et al.
2019.
Inspire Record 1733689 DOI 10.17182/hepdata.91239

The cross section of jets reconstructed from charged particles is measured in the transverse momentum range of $5<p_\mathrm{T}<100\ \mathrm{GeV}/c$ in pp collisions at the center-of-mass energy of $\sqrt{s} = 5.02\ \mathrm{TeV}$ with the ALICE detector. The jets are reconstructed using the anti-$k_\mathrm{T}$ algorithm with resolution parameters $R=0.2$, $0.3$, $0.4$, and $0.6$ in the pseudorapidity range $|\eta|< 0.9-R$. The charged jet cross sections are compared with the leading order (LO) and to next-to-leading order (NLO) perturbative Quantum ChromoDynamics (pQCD) calculations. It was found that the NLO calculations agree better with the measurements. The cross section ratios for different resolution parameters were also measured. These ratios increase from low $p_\mathrm{T}$ to high $p_\mathrm{T}$ and saturate at high $p_\mathrm{T}$, indicating that jet collimation is larger at high $p_\mathrm{T}$ than at low $p_\mathrm{T}$. These results provide a precision test of pQCD predictions and serve as a baseline for the measurement in Pb$-$Pb collisions at the same energy to quantify the effects of the hot and dense medium created in heavy-ion collisions at the LHC.

4 data tables

Charged jet differential cross sections without UE subtraction in pp collisions at $\sqrt{s}$ = 5.02 TeV with the leading track bias. All jets must contain at least one track with $p_{T}$ > 5 GeV/$c$. Statistical uncertainties are displayed as vertical error bars. The total systematic uncertainties are shown as shaded bands around the data points. Data are scaled to enhance visibility

Fig. 6: Charged jet cross section ratios for $\\sigma$(R = 0.2)/$\\sigma$(R = 0.4) (Red) and $\\sigma$(R = 0.2)/$\\sigma$(R = 0.6). The systematic uncertainty of the cross section ratio is indicated by a shaded band drawn around data points.

Fig. 3: Fully corrected charged jet differential cross sections in pp collisions at $\\sqrt{s}$ = 5.02 TeV. Statistical uncertainties are displayed as vertical error bars. The total systematic uncertainties are shown as shaded bands around the data points. Data are scaled to enhance visibility.

More…

Measurement of prompt photon production in $\sqrt{s_\mathrm{NN}} = 8.16$ TeV $p$+Pb collisions with ATLAS

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett. B796 (2019) 230-252, 2019.
Inspire Record 1723858 DOI 10.17182/hepdata.87256

The inclusive production rates of isolated, prompt photons in p+Pb collisions at sNN=8.16 TeV are studied with the ATLAS detector at the Large Hadron Collider using a dataset with an integrated luminosity of 165 nb −1 recorded in 2016. The cross-section and nuclear modification factor RpPb are measured as a function of photon transverse energy from 20 GeV to 550 GeV and in three nucleon–nucleon centre-of-mass pseudorapidity regions, (−2.83,−2.02) , (−1.84,0.91) , and (1.09,1.90) . The cross-section and RpPb values are compared with the results of a next-to-leading-order perturbative QCD calculation, with and without nuclear parton distribution function modifications, and with expectations based on a model of the energy loss of partons prior to the hard scattering. The data disfavour a large amount of energy loss and provide new constraints on the parton densities in nuclei.

7 data tables

The measured cross sections for prompt, isolated photons with rapidity in (1.09,1.90).

The measured cross sections for prompt, isolated photons with rapidity in (−1.84,0.91).

The measured cross sections for prompt, isolated photons with rapidity in (−2.83,−2.02).

More…