Structure Within the R(1675) Boson and Possible Structure within the A_2(1290)

The CERN Missing Mass Spect. collaboration Levrat, B. ; Tolstrup, C.A. ; Nef, C. ;
Phys.Lett. 22 (1966) 714-718, 1966.
Inspire Record 50977 DOI 10.17182/hepdata.29839

Three narrow peaks with masses 1632 ± 15, 1700 ± 15 and 1748 ± 15, reffered to as R 1 , R 2 and R 3 , have been observed in missing-mass spectrometer runs at incident pion momenta of 7 and 12 GeV/ c and a mass-resolution of ± 15 MeV. One-peak hypothesis gives a confidence level P ( χ 2 )=0.8%; the three-peak one gives P ( χ 2 )=60%. Statistical significance for R 1 , R 2 and R 3 is, respectively, 3.8, 6.6 and 6.1 standard deviations from the highest background line. R 1 and R 2 decay into one and three, while the R 3 decays mainly into three charged particles. Their physical widths are compatible with zero, with upper limits of the order of Γ ⩽30 MeV.

1 data table

No description provided.


Small Angle Elastic Proton Proton Scattering from 25-GeV to 200-GeV.

Bartenev, V. ; Kuznetsov, A. ; Morozov, B. ; et al.
Phys.Rev.Lett. 29 (1972) 1755-1758, 1972.
Inspire Record 73778 DOI 10.17182/hepdata.21428

We have measured the differential cross section for small angle p−p scattering from 25 to 200 GeV incident energy and in the momentum transfer range 0.015<|t|<0.080 (GeVc)2. We find that the slope of the forward diffraction peak, b(s), increases with energy and can be fitted by the form b(s)=b0+2α′ lns, where b0=8.3±1.3 and α′=0.28±0.13 (GeVc)−2. Such dependence is compatible with the data existing both at higher and lower energies. We have also obtained the energy dependence of the p−p total cross section in the energy range from 48 to 196 GeV. Within our errors which are ± 1.1 mb the total cross section remains constant.

2 data tables

No description provided.

THE TOTAL CROSS SECTION IS NORMALIZED TO 38.5 +- 0.1 MB AT 48 GEV. IT HAS BEEN DERIVED USING THE OPTICAL THEOREM FROM THE EXTRAPOLATED FORWARD ELASTIC CROSS SECTION AND WITH ALPHA = -0.09.


MEASUREMENT OF P P ---> P X BETWEEN 50-GEV/C AND 400-GEV/C.

Abe, K. ; De Lillo, T. ; Robinson, B. ; et al.
Phys.Rev.Lett. 31 (1973) 1527-1530, 1973.
Inspire Record 81796 DOI 10.17182/hepdata.50301

We present measurements of the invariant cross section for the inclusive reaction p+p→p+X in the region 0.14<|t|<0.38 GeV2, 100<s<750 GeV2, and 0.80<x<0.93.

1 data table

The cross sections are fitted by the formula CONST(C=A)*EXP(SLOPE*T)*(1+CO NST(C=B)/SQRT(S)).


Production of high transverse momentum particles in p p collisions in the central region at the CERN ISR

The British-Scandinavian ISR collaboration Alper, B. ; Boggild, H. ; Jarlskog, G. ; et al.
Phys.Lett.B 44 (1973) 521-526, 1973.
Inspire Record 85256 DOI 10.17182/hepdata.28095

The inclusive production al all charged particles of transverse momentum p T between 1.5 and 4.4 GeV/ c at centre of mass angles 90° and 59.4° from p-p-collisions with √ s = 44 and 53 GeV has been measured. No strong energy dependence is observed for these transverse momenta.

6 data tables

Errors are statistical only.

Errors are statistical only.

Errors are statistical only.

More…

Real Part of the Proton-Proton Forward Scattering Amplitude from 50-GeV to 400-GeV.

Bartenev, V. ; Carrigan, Richard A. ; Chiang, I-Hung ; et al.
Phys.Rev.Lett. 31 (1973) 1367-1370, 1973.
Inspire Record 81733 DOI 10.17182/hepdata.21379

From measurements of proton-proton elastic scattering at very small momentum transfers where the nuclear and Coulomb amplitudes interfere, we have deduced values of ρ, the ratio of the real to the imaginary forward nuclear amplitude, for energies from 50 to 400 GeV. We find that ρ increases from -0.157 ± 0.012 at 51.5 GeV to +0.039 ± 0.012 at 393 GeV, crossing zero at 280 ± 60 GeV.

1 data table

No description provided.


Measurement of the Slope of the Diffraction Peak for Elastic pp Scattering from 8-GeV to 400-GeV.

Bartenev, V. ; Kuznetsov, A. ; Morozov, B. ; et al.
Phys.Rev.Lett. 31 (1973) 1088-1091, 1973.
Inspire Record 81722 DOI 10.17182/hepdata.21381

The slope b(s) of the forward diffraction peak of p−p elastic scattering has been measured in the momentum-transfer-squared range 0.005≲|t|≲0.09 (GeV/c)2 and at incident proton energies from 8 to 400 GeV. We find that b(s) increases with s, and in the interval 100≲s≲750 (GeV)2 it can be fitted by the form b(s)=b0+2α′lns with b0=8.23±0.27, α′=0.278±0.024 (GeV/c)−2.

1 data table

MOMENTUM BINS ARE APPROX 20 GEV WIDE CENTRED AT THE GIVEN PLAB EXCEPT FOR THE 9 AND 12 GEV POINTS WHICH HAVE WIDTHS OF APPROX 1 AND 4 GEV RESPECTIVELY.


MEASUREMENT OF TOTAL CROSS-SECTIONS IN NEUTRINO INTERACTIONS WITH PROTON AND NUCLEI IN THE ENERGY RANGE 26-GeV - 54-GeV

Babaev, A. ; Brakhman, E. ; Galaktionov, Iouri ; et al.
Yad.Fiz. 20 (1974) 71-86, 1974.
Inspire Record 80946 DOI 10.17182/hepdata.19117

None

1 data table

No description provided.


Determination of Triple Regge Couplings from a Study of the Reaction p p -> p X between 50-GeV and 400-GeV

Abe, K. ; De Lillo, T. ; Robinson, B. ; et al.
Phys.Rev.Lett. 31 (1973) 1530, 1973.
Inspire Record 82045 DOI 10.17182/hepdata.21356

We present an analysis, in the framework of the triple Regge model, of our recent experimental results on the reaction p+p→p+X between 50 and 400 GeV.

2 data tables

The cross sections is fitted in the framework of the triple Regge model. The symbols P and R in the (C=...) denote pomeron and reggeon, respectively. For fit I and II the authors used conventional trajectories alpha(P) = 1 +0.25*T, alpha(R) = 0.5 + T. Fit II is restricted to data with (1 - M(P=4)**2/S) > 0.84. In fit III they use alpha(R) = 0.2 + T for the RRP term. Fit IV is like fit I with additional fixed (pion pion P) term.

The cross sections is fitted in the farmework of the triple Regge model. The symbols P and R in teh (C=...) denote pomeron and reggeon, respectively. CONST(C=C) and SLOPE are from the replacement of the RRP term by the exponential one : CONST(C=C)*(SLOPE*(1-x)). See text for detail.


Updated Charged-Particle Multiplicity Distribution from 205-GeV/c Proton Proton Interactions

Barish, S. ; Cho, Y. ; Colley, D.C. ; et al.
Phys.Rev.D 9 (1974) 2689, 1974.
Inspire Record 609 DOI 10.17182/hepdata.21974

The charged-particle multiplicity distribution in 205−GeVc proton-proton interactions is presented. In addition, the total diffractive contributions to each charged multiplicity are estimated assuming a factorizable Pomeron.

1 data table

THE TOTAL CROSS SECTION NORMALIZATION COMES FROM THIS AND OTHER EXPERIMENTS.


Analysis of Two Prong Events on p p Interactions at 205-GeV/c: Separation of Elastic and Inelastic Events.

Barish, S. ; Colley, D. ; Derrick, M. ; et al.
Phys.Rev.D 9 (1974) 1171-1179, 1974.
Inspire Record 93436 DOI 10.17182/hepdata.21998

We present results of complete measurements of the two-prong events observed in a 50 000-picture exposure of the 30-in. hydrogen bubble chamber to a 205−GeVc proton beam at the National Accelerator Laboratory. Using kinematic fitting, elastic and inelastic events are separated and cross sections are obtained. The total two-prong cross section is measured to be 9.77 ± 0.40 mb, of which 2.85 ± 0.26 mb represents the inelastic contribution. The total elastic cross section is measured to be 6.92 ± 0.44 mb. Our data are consistent with the break in dσdt at |t|∼0.1−0.2 (GeVc)2 observed at the CERN ISR. A prominent low-mass enhancement is observed in the distribution of missing mass squared from the slow proton for the inelastic events. An analysis based on the missing-mass spectrum and the particle rapidities shows that this low-mass enhancement accounts for about 77% of the total inelastic two-prong cross section. The diffractive cross section in the two-prong events is 2.20 ± 0.25 mb, in agreement with certain two-component models.

2 data tables

USING A TOTAL CROSS SECTION OF 39.0 +- 1.0 MB.

No description provided.