Multijet production in neutral current deep inelastic scattering at HERA and determination of alpha(s).

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Eur.Phys.J.C 44 (2005) 183-193, 2005.
Inspire Record 676091 DOI 10.17182/hepdata.46201

Multijet production rates in neutral current deep inelastic scattering have been measured in the range of exchanged boson virtualities 10 < Q2 < 5000 GeV2. The data were taken at the ep collider HERA with centre-of-mass energy sqrt(s) = 318 GeV using the ZEUS detector and correspond to an integrated luminosity of 82.2 pb-1. Jets were identified in the Breit frame using the k_T cluster algorithm in the longitudinally invariant inclusive mode. Measurements of differential dijet and trijet cross sections are presented as functions of jet transverse energy E_{T,B}{jet}, pseudorapidity eta_{LAB}{jet} and Q2 with E_{T,B}{jet} > 5 GeV and -1 < eta_{LAB}{jet} < 2.5. Next-to-leading-order QCD calculations describe the data well. The value of the strong coupling constant alpha_s(M_Z), determined from the ratio of the trijet to dijet cross sections, is alpha_s(M_Z) = 0.1179 pm 0.0013(stat.) {+0.0028}_{-0.0046}(exp.) {+0.0064}_{-0.0046}(th.)

10 data tables

Inclusive trijet cross section as a function of the jet transverse energy in the Breit frame for the jet with the highest transverse energy.

Inclusive trijet cross section as a function of the jet transverse energy in the Breit frame for the jet with the second highest transverse energy.

Inclusive trijet cross section as a function of the jet transverse energy in the Breit frame for the jet with the third highest transverse energy.

More…

Jet production in charged current deep inelastic e+ p scattering at HERA.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 31 (2003) 149-164, 2003.
Inspire Record 620434 DOI 10.17182/hepdata.46434

The production rates and substructure of jets have been studied in charged current deep inelastic e+p scattering for Q**2>200 GeV**2 with the ZEUS detector at HERA using an integrated luminosity of 110.5 pb**-1. Inclusive jet cross sections are presented for jets with transverse energies E_T(jet) > 14 GeV and pseudorapidities in the range -1 < eta(jet) < 2. Dijet cross sections are presented for events with a jet having E_T(jet) > 14 GeV and a second jet having E_T(jet) > 5 GeV. Measurements of the mean subjet multiplicity, <n_sbj>, of the inclusive jet sample are presented. Predictions based on parton-shower Monte Carlo models and next-to-leading-order QCD calculations a re compared to the measurements. The value of alphas(M_Z), determined from <n_sbj> at y_cut=0.01 for jets with 25<E_T(jet)<119 GeV, is alphas(M_Z) = 0.1202 +-0.0052 (stat.) +0.0060-0.0019 (syst.) +0.0065-0.0053 (th.). The mean subjet multiplicity as a function of Q**2 is found to be consistent with that measured in NC DIS.

20 data tables

Inclusive jet cross section DSIG/DQ**2 for jets in the lab. frame. Data from the 1995-1997 sample.

Inclusive jet cross section DSIG/DQ**2 for jets in the lab. frame. Data from the 1999-2000 sample.

Inclusive jet cross section DSIG/DQ**2 for jets in the lab. frame. Data from the combined sample.

More…

Deep-inelastic inclusive e p scattering at low x and a determination of alpha(s).

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Eur.Phys.J.C 21 (2001) 33-61, 2001.
Inspire Record 539089 DOI 10.17182/hepdata.46937

A precise measurement of the inclusive deep-inelastic e^+p scattering cross section is reported in the kinematic range 1.5<= Q^2 <=150 GeV^2 and 3*10^(-5)<= x <=0.2. The data were recorded with the H1 detector at HERA in 1996 and 1997, and correspond to an integrated luminosity of 20 pb^(-1). The double differential cross section, from which the proton structure function F_2(x,Q^2) and the longitudinal structure function F_L(x,Q^2) are extracted, is measured with typically 1% statistical and 3% systematic uncertainties. The measured partial derivative (dF_2(x,Q^2)/dln Q^2)_x is observed to rise continuously towards small x for fixed Q^2. The cross section data are combined with published H1 measurements at high Q^2 for a next-to-leading order DGLAP QCD analysis.The H1 data determine the gluon momentum distribution in the range 3*10^(-4)<= x <=0.1 to within an experimental accuracy of about 3% for Q^2 =20 GeV^2. A fit of the H1 measurements and the mu p data of the BCDMS collaboration allows the strong coupling constant alpha_s and the gluon distribution to be simultaneously determined. A value of alpha _s(M_Z^2)=0.1150+-0.0017 (exp) +0.0009-0.0005 (model) is obtained in NLO, with an additional theoretical uncertainty of about +-0.005, mainly due to the uncertainty of the renormalisation scale.

6 data tables

The reduced deep inelastic cross section , and F2, with data taken in the dedicated low Q**2 trigger run of 1997. For y < 0.6, F2 is extracted using the quoted values of R, defined from a QCD fit to the H1 cross section data. The firstDSYS error is the uncorrelated systematic error, and the second is the correlat ed systematic error.

The reduced deep inelastic cross section , and F2, with data taken in 1996/97. For y < 0.6, F2 is extracted using the quoted values of R, defined from a QCD fit to the H1 cross section data. The first DSYS error is the uncorrelated systematic error, and the second is the correlated systematic error.

The measured value of the reduced cross section derivative D(SIG(C=REDUCED))/DLN(Y) calculated at fixed Q**2 bins. The data below 13.5 GeV come from the special low Q**2 run in 1997. The larger Q**2 come from the 1996/97 data.

More…

A measurement of the b-quark mass from hadronic Z decays.

The ALEPH collaboration Barate, R. ; Decamp, D. ; Ghez, Philippe ; et al.
Eur.Phys.J.C 18 (2000) 1-13, 2000.
Inspire Record 531468 DOI 10.17182/hepdata.49909

Hadronic Z decay data taken with the ALEPH detector at LEP1 are used to measure the three-jet rate as well as moments of various event-shape variables. The ratios of the observables obtained from b-tagged events and from an inclusive sample are determined. The mass of the b quark is extracted from a fit to the measured ratios using a next-to-leading order prediction including mass effects. Taking the first moment of the y3 distribution, which is the observable with the smallest hadronization corrections and systematic uncertainties, the result is: mb(MZ) = [3.27+-0.22(stat) +-0.22(exp)+-0.38(had)+-0.16(theo)] GeV/c2. The measured ratio is alternatively employed to test the flavour independence of the strong coupling constant for b and light quarks.

1 data table

No description provided.


Consistent measurements of alpha(s) from precise oriented event shape distributions.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 14 (2000) 557-584, 2000.
Inspire Record 522656 DOI 10.17182/hepdata.13245

An updated analysis using about 1.5 million events recorded at $\sqrt{s} = M_Z$ with the DELPHI detector in 1994 is presented. Eighteen infrared and collinear safe event shape observables are measured as a function of the polar angle of the thrust axis. The data are compared to theoretical calculations in ${\cal O} (\alpha_s^2)$ including the event orientation. A combined fit of $\alpha_s$ and of the renormalization scale $x_{\mu}$ in $\cal O(\alpha_s^2$) yields an excellent description of the high statistics data. The weighted average from 18 observables including quark mass effects and correlations is $\alpha_s(M_Z^2) = 0.1174 \pm 0.0026$. The final result, derived from the jet cone energy fraction, the observable with the smallest theoretical and experimental uncertainty, is $\alpha_s(M_Z^2) = 0.1180 \pm 0.0006 (exp.) \pm 0.0013 (hadr.) \pm 0.0008 (scale) \pm 0.0007 (mass)$. Further studies include an $\alpha_s$ determination using theoretical predictions in the next-to-leading log approximation (NLLA), matched NLLA and $\cal O(\alpha_s^2$) predictions as well as theoretically motivated optimized scale setting methods. The influence of higher order contributions was also investigated by using the method of Pad\'{e} approximants. Average $\alpha_s$ values derived from the different approaches are in good agreement.

33 data tables

The weighted value of ALPHA-S from all the measured observables using experimentally optimized renormalization scale values and corrected for the b-mass toleading order.

The value of ALPHA-S derived from the JCEF and corrected for heavy quark mass effects. The quoted errors are respectively due to experimental error, hadronization, renormalization scale and heavy quark mass correction uncertainties.

Energy Energy Correlation EEC.

More…

Test of the flavour independence of alpha(s) using next-to-leading order calculations for heavy quarks.

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Alexander, G. ; et al.
Eur.Phys.J.C 11 (1999) 643-659, 1999.
Inspire Record 498246 DOI 10.17182/hepdata.49192

We present a test of the flavour independence of the strong coupling constant for charm and bottom quarks with respect to light (uds) quarks, based on a hadronic event sample obtained with the OPAL detector at LEP. Five observables related to global event shapes were used to measure alpha_s in three flavour tagged samples (uds, c and b). The event shape distributions were fitted by Order(alpha_s**2) calculations of jet production taking into account mass effects for the c and b quarks. We find: = 0.997 +- 0.038(stat.) +- 0.030(syst.) +- 0.012(theory) and = 0.993 +- 0.008(stat.) +- 0.006(syst.) +- 0.011(theory) for the ratios alpha_s(charm)/alpha_s(uds) and alpha_s(b)/alpha_s(uds) respectively.

1 data table

No description provided.


Energy dependence of event shapes and of alpha(s) at LEP-2.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 456 (1999) 322-340, 1999.
Inspire Record 499183 DOI 10.17182/hepdata.49129

Infrared and collinear safe event shape distributions and their mean values are determined using the data taken at five different centre of mass energies above M Z with the DELPHI detector at LEP. From the event shapes, the strong coupling α s is extracted in O ( α s 2 ), NLLA and a combined scheme using hadronisation corrections evaluated with fragmentation model generators as well as using an analytical power ansatz. Comparing these measurements to those obtained at M Z , the energy dependence (running) of α s is accessible. The logarithmic energy slope of the inverse strong coupling is measured to be d α −1 s d log (E cm ) =1.39±0.34( stat )±0.17( syst ) , in good agreement with the QCD expectation of 1.27.

47 data tables

Moments of the (1-THRUST) distributions at cm energies 133, 161, 172 and 183 GeV.

Moments of the Thrust Major distributions at cm energies 133, 161, 172 and 183 GeV.

Moments of the Thrust Minor distributions at cm energies 133, 161, 172 and 183 GeV.

More…

A New determination of alpha(s) using direct photon production cross-sections in p p and anti-p p collisions at S**(1/2) = 24.3-GeV

The UA6 collaboration Werlen, M. ; Ballocchi, G. ; Breedon, R.E. ; et al.
Phys.Lett.B 452 (1999) 201-206, 1999.
Inspire Record 496157 DOI 10.17182/hepdata.34551

Direct photon production cross sections obtained in high statistics p ̄ p and pp collisions at s =24.3 GeV at the CERN SPS are used in a next-to-leading order QCD analysis. From the cross section difference σ( p ̄ p → γX)−σ(pp → γX) and quark distributions measured in deep inelastic scattering, a determination of the strong coupling constant, α s , is performed via a measurement of Λ (4) MS . This measurement yields a value Λ (4) MS = 210±22 ( stat. )±44 ( syst. ) +105 −36 ( theo. ) MeV. The corresponding value of α s expressed at M 2 Z is α s (M 2 Z )=0.1112 ±0.0016 ( stat. ) ±0.0033 ( syst. ) +0.0077 −0.0034 ( theo. ) .

1 data table

Value of LAMBDA(MSBAR) and ALPHAS at MZ**2 deduced from the difference in the pbar and p direct photon cross sections. The second systematic error is due to the uncertainties in the theory.


A measurement of alpha(s)(Q**2) from the Gross-Llewellyn Smith sum rule.

Kim, J.H. ; Harris, Deborah A. ; Arroyo, C.G. ; et al.
Phys.Rev.Lett. 81 (1998) 3595-3598, 1998.
Inspire Record 475039 DOI 10.17182/hepdata.19536

We extract a set of values for the Gross-Llewellyn Smith sum rule at different values of 4-momentum transfer squared ($Q^{2}$), by combining revised CCFR neutrino data with data from other neutrino deep-inelastic scattering experiments for $1 < Q^2 < 15 GeV^2/c^2$. A comparison with the order $\alpha^{3}_{s}$ theoretical predictions yields a determination of $\alpha_{s}$ at the scale of the Z-boson mass of $0.114 \pm^{.009}_{.012}$. This measurement provides a new and useful test of perturbative QCD at low $Q^2$, because of the low uncertainties in the higher order calculations.

3 data tables

No description provided.

Total GLS integral and ALPHAS for each bin in Q2. Systematic errors are correlated in different Q2 bins. The second DSYS error in ALPHAS is due to the uncertainty in the theory.

ALPHAS extrapolated to the Z0 mass. The second DSYS error is due to the uncertainty in the theory.


Multi-jet event rates in deep inelastic scattering and determination of the strong coupling constant.

The H1 collaboration Adloff, C. ; Anderson, M. ; Andreev, V. ; et al.
Eur.Phys.J.C 6 (1999) 575-585, 1999.
Inspire Record 473521 DOI 10.17182/hepdata.44216

Jet event rates in deep inelastic ep scattering at HERA are investigated applying the modified JADE jet algorithm. The analysis uses data taken with the H1 detector in 1994 and 1995. The data are corrected for detector and hadronization effects and then compared with perturbative QCD predictions using next-to-leading order calculations. The strong coupling constant alpha_S(M_Z^2) is determined evaluating the jet event rates. Values of alpha_S(Q^2) are extracted in four different bins of the negative squared momentum transfer~$\qq$ in the range from 40 GeV2 to 4000 GeV2. A combined fit of the renormalization group equation to these several alpha_S(Q^2) values results in alpha_S(M_Z^2) = 0.117+-0.003(stat)+0.009-0.013(syst)+0.006(jet algorithm).

3 data tables

Measured (2+1) jet event rates using the modified JADE algorithm (C=MEAS), corrected to the hadron (C=HAD) and to the parton (C=PAR) level. The variable Z(p) is defined as the minimum (for i=1,2) of. (E_jet,i*(1-cos(theta_jet,i)/SUM(j=1,2)(E_jet,j*(1-cos(theta,j)).

ALPHAS at different Q2 values. The TOT error is the total error.

ALPHAS extrapolated to the Z0 mass. The second DSYS (systematic) error is from the jet finding alogrithm.


Differential (2+1) jet event rates and determination of alpha(s) in deep inelastic scattering at HERA.

The H1 collaboration Adloff, C. ; Anderson, M. ; Andreev, V. ; et al.
Eur.Phys.J.C 5 (1998) 625-639, 1998.
Inspire Record 472304 DOI 10.17182/hepdata.44249

Events with a (2+1) jet topology in deep-inelastic scattering at HERA are studied in the kinematic range 200 < Q^2< 10,000 GeV^2. The rate of (2+1) jet events has been determined with the modified JADE jet algorithm as a function of the jet resolution parameter and is compared with the predictions of Monte Carlo models. In addition, the event rate is corrected for both hadronization and detector effects and is compared with next-to-leading order QCD calculations. A value of the strong coupling constant of alpha_s(M_Z^2)= 0.118+- 0.002 (stat.)^(+0.007)_(-0.008) (syst.)^(+0.007)_(-0.006) (theory) is extracted. The systematic error includes uncertainties in the calorimeter energy calibration, in the description of the data by current Monte Carlo models, and in the knowledge of the parton densities. The theoretical error is dominated by the renormalization scale ambiguity.

4 data tables

Y2 distribution corrected for detector effects.

Y2 distribution corrected for both detector and hadronization effects.

Y2 distribution using the E, E0 and P variants of the JADE alogrithm, corrected for both detector and hadronization effects. Statistical errors only.

More…

A next-to-leading order QCD analysis of the spin structure function g1.

The Spin Muon collaboration Adeva, B. ; Akdogan, T. ; Arik, E. ; et al.
Phys.Rev.D 58 (1998) 112002, 1998.
Inspire Record 471982 DOI 10.17182/hepdata.49415

We present a next-to-leading order QCD analysis of the presently available data on the spin structure function g1 including the final data from the Spin Muon Collaboration. We present results for the first moments of the proton, deuteron, and neutron structure functions, and determine singlet and nonsinglet parton distributions in two factorization schemes. We also test the Bjorken sum rule and find agreement with the theoretical prediction at the level of 10%.

7 data tables

The second systematic (DSYS) error is due to QCD evolution.

First moments of the fitted function G1 evaluated on unmeasured X regions. Total uncertainties due to experimental systematics and theoretical sourc es in the QCD evolution.

First moment of fitted G1 evaluated on the whole X region.

More…

Measurement of alpha(s) using NLLA + O (alpha-s**2) in e+ e- annihilation at s**(1/2) = 58-GeV

The AMY collaboration Kim, D.Y. ; Kang, J.S. ; Myung, S.S. ; et al.
Phys.Lett.B 420 (1998) 233-240, 1998.
Inspire Record 455114 DOI 10.17182/hepdata.28221

A measurement of the strong coupling constant α S is presented using hadronic events produced in e + e − annihilations at s =58.0 GeV from the AMY detector at TRISTAN. The measurement is based on comparisons of the distributions of thrust, heavy jet mass, total jet broadening, wide jet broadening, and energy-energy correlations with QCD calculations resummed up to next-to-leading-logarithms matched with the O ( α S 2 ) perturbative calculation. Combining the results of the individual evaluations, we find α S (58 GeV )=0.132±0.006 .

1 data table

No description provided.


Measurement of the total cross section for e+ e- --> hadrons at s**(1/2) = 10.52-GeV.

The CLEO collaboration Ammar, R. ; Baringer, Philip S. ; Bean, A. ; et al.
Phys.Rev.D 57 (1998) 1350-1358, 1998.
Inspire Record 445351 DOI 10.17182/hepdata.47132

Using the CLEO detector at the Cornell Electron Storage Ring, we have made a measurement of R=sigma(e+e- ->hadrons)/sigma(e+e- ->mu+mu-) =3.56+/-0.01+/-0.07 at ECM=10.52 GeV. This implies a value for the strong coupling constant of alpha_s(10.52 GeV)=0.20+/-0.01+/-0.06, or alpha_s(M_Z)=0.13+/-0.005+/-0.03.

2 data tables

Corrected for background and radiactive effects.

Value of ALPHAS, the strong coupling constant, from the measurement of R. CT,= ALPHAS also given evolved to the Z0 mass.


Study of hadronic events and measurements of alpha(s) between 30-GeV and 91-GeV.

The L3 collaboration Acciarri, M. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 411 (1997) 339-353, 1997.
Inspire Record 445998 DOI 10.17182/hepdata.47465

We have studied the structure of hadronic events with a hard, isolated photon in the final state (e + e − → Z → hadrons + γ) in the 3.6 million hadronic events collected with the L3 detector at centre-of-mass energies around 91 GeV. The centre-of-mass energy of the hadronic system is in the range 30 GeV to 86 GeV. Event shape variables have been measured at these reduced centre-of-mass energies and have been compared with the predictions of different QCD Monte Carlo programs. The event shape variables and the energy dependence of their mean values are well reproduced by QCD models. We fit distributions of several global event shape variables to resummed O (α s 2 ) calculations to determine the strong coupling constant α s over a wide range of energies. We find that the strong coupling constant α s decreases with increasing energy, as expected from QCD.

6 data tables

No description provided.

No description provided.

No description provided.

More…

QCD studies and determination of alpha(s) in e+ e- collisions at s**(1/2) = 161-GeV and 172-GeV.

The L3 collaboration Acciarri, M. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 404 (1997) 390-402, 1997.
Inspire Record 443563 DOI 10.17182/hepdata.47483

We present a study of the structure of hadronic events recorded by the L3 detector at LEP at the center of mass energies of 161 and 172 GeV. The data sample corresponds to an integrated luminosity of 21.25 pb −1 collected during the high energy runs of 1996. The distributions of event shape variables and the energy dependence of their mean values are well reproduced by QCD models. From a comparison of the data with resummed O ( α s 2 ) QCD calculations, we determine the strong coupling constant at the two energies. Combining this with our earlier measurements we find that the strong coupling constant decreases with increasing energy as expected in QCD.

8 data tables

No description provided.

Average jet multiplicity using JADE algorithm.

Average jet multiplicity using Durham algorithm.

More…

A measurement of alpha(s) from the scaling violation in e+ e- annihilation.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 398 (1997) 194-206, 1997.
Inspire Record 428178 DOI 10.17182/hepdata.47581

The hadronic fragmentation functions of the various quark flavours and of gluons are measured in a study of the inclusive hadron production from Z 0 decays with the DELPHI detector and are compared with the fragmentation functions measured elsewhere at energies between 14 GeV and 91 GeV. A large scaling violation is observed, which is used to extract the strong coupling constant from a fit using a numerical integration of the second order DGLAP evolution equations. The result is α s ( M Z ) = 0.124 −0.007 +0.006 (exp) ± 0.009(theory) where the first error represents the experimental uncertainty and the second error is due to the factorization and renormalization scale dependence.

2 data tables

SIG(Q=BQ, Q=CQ, Q=UDS) corresponds to BQ, CQ, and U,D,S quarks fragmentation into charged hadron.

alpha_s was evaluated from the scaling violation of the fragmentation func tions. The data from other experiments are used for the fitting procedure.


Energy dependence of the differences between the quark and gluon jet fragmentation

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 70 (1996) 179-196, 1996.
Inspire Record 403254 DOI 10.17182/hepdata.48064

Three jet events arising from decays of the Z boson, collected by the DELPHI detector, were used to measure differences in quark and gluon fragmentation. Gluon jets were anti-tagged by identifying b quark jets. Unbiased quark jets came from events with two jets plus one photon. Quark and gluon jet properties in different energy ranges were compared for the first time within the same detector. Quark and gluon jets of nearly the same energy in symmetric three jet event topologies were also compared. Using three independent methods, the average value of the ratio of the mean charged multiplicities of gluon and quark jets is $$< r >=1.241 pm 0.015 (stat.)pm 0.025 (syst.).$$ Gluon jets are broader and produce fragments with a softer energy spectrum than quark jets of equivalent energy. The string effect has been observed in fully symmetric three jet events. The measured ratio Rγ of the charged particle flow in the qq̅ inter-jet region of the qq̅g and qq̅γ samples agrees with the perturbative QCD expectation. The dependence of the mean charged multiplicity on the hadronic center-of-mass energy was analysed in photon plus n-jet events. The value for αs(MZ) determined from these data using a QCD prediction with corrections at leading and next-to-leading order is $$←pha_s(M_Z)=0.116pm 0.003 (stat.)pm 03009 (syst.).$$

2 data tables

No description provided.

Durham and JADE algoritms were used.


Measurement of alpha-s from scaling violations in fragmentation functions in e+ e- annihilation

The ALEPH collaboration Buskulic, D. ; Casper, D. ; De Bonis, I. ; et al.
Phys.Lett.B 357 (1995) 487-499, 1995.
Inspire Record 398195 DOI 10.17182/hepdata.47843

A study of scaling violations in fragmentation functions performed by the ALEPH collaboration at LEP is presented. Data samples enriched in uds, c, b and gluon jets, respectively, together with measurements of the longitudinal and transverse inclusive cross sections are used to extract the fragmentation function for the gluon and for each flavour. The measurements are compared to data from experiments at energies between 22 GeV and 91 GeV and scaling violations consistent with QCD predictions are observed. From this, a measurement of the strong coupling constant α s ( Mz ) = 0.126 ±0.009 is obtained.

4 data tables

No description provided.

No description provided.

No description provided.

More…

Comparison of a new calculation of energy-energy correlations with e+ e- ---> hadrons data at the Z0 resonance

The SLD collaboration Abe, K. ; Abt, I. ; Ahn, C.J. ; et al.
Phys.Rev.D 52 (1995) 4240-4244, 1995.
Inspire Record 39718 DOI 10.17182/hepdata.22336

We have compared a new QCD calculation by Clay and Ellis of energy-energy correlations (EEC’s) and their asymmetry (AEEC’s) in e+e− annihilation into hadrons with data collected by the SLD experiment at SLAC. From fits of the new calculation, complete at O(αs2), we obtained αs(MZ2)=0.1184±0.0031(expt)±0.0129(theory) (EEC) and αs(MZ2)=0.1120±0.0034(expt)±0.0036(theory) (AEEC). The EEC result is significantly lower than that obtained from comparable fits using the O(αs2) calculation of Kunszt and Nason.

1 data table

The data are compared to the predictions of Monte-Carlo. Two values of ALPHA_S are corresponded the two theoretical models used in the comparison.


Test of the flavor independence of alpha-s

The ALEPH collaboration Buskulic, D. ; Casper, D. ; De Bonis, I. ; et al.
Phys.Lett.B 355 (1995) 381-393, 1995.
Inspire Record 393416 DOI 10.17182/hepdata.48177

Using about 950000 hadronic events collected during 1991 and 1992 with the ALEPH detector, the ratios r b = α s b α s udsc and r uds = α s uds α s cb have been measured in order to test the flavour independence of the strong coupling constant α s . The analysis is based on event-shape variables using the full hadronic sample, two b -quark samples enriched by lepton tagging and lifetime tagging, and a light-quark sample enriched by lifetime antitagging. The combined results are r b = 1.002±0.023 and r uds = 0.971 ± 0.023.

1 data table

No description provided.


A Determination of alpha-s in e+ e- annihilation at s**(1/2) = 57.3-GeV

The AMY collaboration Li, Y.K. ; Sagawa, H. ; Bodek, A. ; et al.
Phys.Lett.B 355 (1995) 394-400, 1995.
Inspire Record 406129 DOI 10.17182/hepdata.6546

We present a study of differential two jet ratios in multi-hadronic final states produced by e + e − annihilation in the AMY detector at TRISTAN. The data are compared to the predictions of the next-to-leading logarithm parton-shower (NLL PS) Monte Carlo and the O ( α s 2 ) matrix element QCD models. We determine the strong coupling strength α s (57.3 GeV) = 0.130 ± 0.006.

6 data tables

The data are compared to the predictions of Monte-Carlo.

Using the p-scheme for jet clustering.

Using the E-scheme for jet clustering.

More…

A Test of the flavor independence of strong interactions

The SLD collaboration Abe, K. ; Abt, I. ; Ahn, C.J. ; et al.
Phys.Rev.D 53 (1996) 2271-2275, 1996.
Inspire Record 382002 DOI 10.17182/hepdata.22341

We present a comparison of the strong couplings of light ($u$, $d$, and $s$), $c$, and $b$ quarks determined from multijet rates in flavor-tagged samples of hadronic $Z~0$ decays recorded with the SLC Large Detector at the SLAC Linear Collider. Flavor separation on the basis of lifetime and decay multiplicity differences among hadrons containing light, $c$, and $b$ quarks was made using the SLD precision tracking system. We find: $\alpha_s{_{\vphantom{y}}}~{uds}/{\alpha_s{_{\vphantom{y}}}~{\rm all}} = 0.987 \pm 0.027({\rm stat}) \pm 0.022({\rm syst}) \pm 0.022({\rm theory})$, $\alpha_s{_{\vphantom{y}}}~c/{\alpha_s{_{\vphantom{y}}}~{\rm all}} = 1.012 \pm 0.104 \pm 0.102 \pm 0.096$, and $\alpha_s{_{\vphantom{y}}}~b/{\alpha_s{_{\vphantom{y}}}~{\rm all}} = 1.026 \pm 0.041 \pm 0.041\pm 0.030.$

1 data table

No description provided.


Measurement of alpha-s (M(Z)**2) from hadronic event observables at the Z0 resonance

The SLD collaboration Abe, K. ; Abt, I. ; Ahn, C.J. ; et al.
Phys.Rev.D 51 (1995) 962-984, 1995.
Inspire Record 378545 DOI 10.17182/hepdata.22450

The strong coupling alpha_s(M_Z^2) has been measured using hadronic decays of Z^0 bosons collected by the SLD experiment at SLAC. The data were compared with QCD predictions both at fixed order, O(alpha_s^2), and including resummed analytic formulae based on the next-to-leading logarithm approximation. In this comprehensive analysis we studied event shapes, jet rates, particle correlations, and angular energy flow, and checked the consistency between alpha_s(M_Z^2) values extracted from these different measures. Combining all results we obtain alpha_s(M_Z^2) = 0.1200 \pm 0.0025(exp.) \pm 0.0078(theor.), where the dominant uncertainty is from uncalculated higher order contributions.

16 data tables

Final average value of alpha_s. The second (DSYS) error is from the uncertainty on the theoretical part of the calculation.

TAU is 1-THRUST.

RHO is the normalized heavy jet mass MH**2/EVIS**2.

More…

Measurement of alpha-s from energy-energy correlations at the Z0 resonance

The SLD collaboration Abe, K. ; Abt, I. ; Ash, W.W. ; et al.
Phys.Rev.D 50 (1994) 5580-5590, 1994.
Inspire Record 373005 DOI 10.17182/hepdata.17744

We have determined the strong coupling $\as$ from a comprehensive study of energy-energy correlations ($EEC$) and their asymmetry ($AEEC$) in hadronic decays of $Z~0$ bosons collected by the SLD experiment at SLAC. The data were compared with all four available predictions of QCD calculated up to $\Oa2$ in perturbation theory, and also with a resummed calculation matched to all four of these calculations. We find large discrepancies between $\as$ values extracted from the different $\Oa2$ calculations. We also find a large renormalization scale ambiguity in $\as$ determined from the $EEC$ using the $\Oa2$ calculations; this ambiguity is reduced in the case of the $AEEC$, and is very small when the matched calculations are used. Averaging over all calculations, and over the $EEC$ and $AEEC$ results, we obtain $\asz=0.124~{+0.003}_{-0.004} (exp.) \pm 0.009 (theory).$

5 data tables

Statistical errors only.

Statistical errors only.

ALPHAS from the EEC O(ALPHAS**2) measurement.

More…

Measurement of cross-sections and leptonic forward - backward asymmetries at the z pole and determination of electroweak parameters

The L3 collaboration Acciarri, M. ; Adam, A. ; Adriani, O. ; et al.
Z.Phys.C 62 (1994) 551-576, 1994.
Inspire Record 374696 DOI 10.17182/hepdata.48198

We report on the measurement of the leptonic and hadronic cross sections and leptonic forward-backward asymmetries at theZ peak with the L3 detector at LEP. The total luminosity of 40.8 pb−1 collected

28 data tables

Results from 1990 data. Additional systematic uncertainty of 0.3 pct.

Results from 1991 data. Additional systematic uncertainty of 0.15 pct.

Results from 1992 data. Additional systematic uncertainty of 0.15 pct.

More…

QCD studies using a cone based jet finding algorithm for e+ e- collisions at LEP

The OPAL collaboration Akers, R. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 63 (1994) 197-212, 1994.
Inspire Record 373000 DOI 10.17182/hepdata.48238

We describe a cone-based jet finding algorithm (similar to that used in\(\bar p\)p experiments), which we have applied to hadronic events recorded using the OPAL detector at LEP. Comparisons are made between jets defined with the cone algorithm and jets found by the “JADE” and “Durham” jet finders usually used ine+e− experiments. Measured jet rates, as a function of the cone size and as a function of the minimum jet energy, have been compared with O(αs2) calculations, from which two complementary measurements\(\alpha _s \left( {M_{Z^0 } } \right)\) have been made. The results are\(\alpha _s \left( {M_{Z^0 } } \right)\)=0.116±0.008 and\(\alpha _s \left( {M_{Z^0 } } \right)\)=0.119±0.008 respectively, where the errors include both experimental and theoretical uncertainties. Measurements are presented of the energy flow inside jets defined using the cone algorithm, and compared with equivalent data from\(\bar p\)p interactions, reported by the CDF collaboration. We find that the jets ine+e− are significantly narrower than those observed in\(\bar p\)p. The main contribution to this effect appears to arise from differences between quark- and gluon-induced jets.

16 data tables

Measured 2 jet production rate as a function of EPSILON, the minimum energy of a jet for a fixed cone radius R = 0.7 radians.

Measured 2 jet production rate as a function of R, the jet cone radius, for a fixed value of the minimum jet energy, EPSILON, of 7 GeV.

Measured 3 jet production rate as a function of EPSILON, the minimum energy of a jet for a fixed cone radius R = 0.7 radians.

More…

Measurement of alpha-s from the moment of particle momenta within jets from e+ e- annihilation

The AMY collaboration Lee, K.B. ; Sagawa, H. ; Chung, Y.S. ; et al.
Phys.Lett.B 313 (1993) 469-474, 1993.
Inspire Record 356468 DOI 10.17182/hepdata.51361

We present a study of the third moment of the inclusive momentum distribution of particles within jets produced by e + e - annihilation at TRISTAN. In this analysis, the QCD coupling strength α s is determined by fits to the prediction of the Next-to-Leading Logarithm Parton-Shower model. The measured value of α s (57.9 GeV ) = 0.134 -0.005 +0.006 .

1 data table

No description provided.


A Measurement of alpha-s from jet rates at the Z0 resonance

The SLD collaboration Abe, K. ; Abt, I. ; Acton, P.D. ; et al.
Phys.Rev.Lett. 71 (1993) 2528-2532, 1993.
Inspire Record 356912 DOI 10.17182/hepdata.19724

We have determined the strong coupling αs from measurements of jet rates in hadronic decays of Z0 bosons collected by the SLD experiment at SLAC. Using six collinear and infrared safe jet algorithms we compared our data with the predictions of QCD calculated up to second order in perturbation theory, and also with resummed calculations. We find αs(MZ2)=0.118±0.002(stat)±0.003(syst)±0.010(theory), where the dominant uncertainty is from uncalculated higher order contributions.

1 data table

The second systematic error comes from the theoretical uncertainties.


Measurements of alpha-s in e+ e- annihilation at TRISTAN

The TOPAZ collaboration Ohnishi, Y. ; Adachi, I. ; Fujimoto, J. ; et al.
Phys.Lett.B 313 (1993) 475-482, 1993.
Inspire Record 361661 DOI 10.17182/hepdata.43784

The strong coupling constant α s was determined from analyses of the thrust, heavy jet mass and, differential 2-jet rate, using e + e - hadronic events at s = 58 GeV with the TOPAZ detector at TRISTAN. The NLLjet Monte Carlo simulation (NLLjet) and analytic formulae based on resummation up to the next-to-leading logarithms combined with O ( α 2 s ) calculations were used to evaluate α s . The average α s values at Q 2 = (58 GeV) 2 from the analyses are α s = 0.125 ± 0.009 for NLLjet and α s = 0.132 ± 0.008 for the resummed analytic formulae.

4 data tables

No description provided.

No description provided.

The exact definition for Y23 see text.

More…

Direct photon production in anti-p p and p p interactions at s**(1/2) = 24.3-GeV

The UA6 collaboration Sozzi, G. ; Ballocchi, G. ; Bernasconi, A. ; et al.
Phys.Lett.B 317 (1993) 243-249, 1993.
Inspire Record 358422 DOI 10.17182/hepdata.28782

Inclusive direct photon invariant cross sections have been measured in both p p and pp collisions at √ s = 24.3 GeV at the CERN SPS, permitting the first measurement of the difference of the p p and pp cross sections. The direct photon cross section in p p collisions has been found to be systematically larger than that in pp collisions, which indicates a significant contribution of the q q annihilation term as predicted by theoretical calculations.

4 data tables

No description provided.

No description provided.

No description provided.

More…

Determination of alpha-s from the scaling violation in the fragmentation functions in e+ e- annihilation

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 311 (1993) 408-424, 1993.
Inspire Record 355937 DOI 10.17182/hepdata.48411

A determination of the hadronic fragmentation functions of the Z 0 boson is presented from a study of the inclusive hadron production with the DELPHI detector at LEP. These fragmentation functions were compared with the ones at lower energies, thus covering data in a large kinematic range: 196 ⩽ Q 2 ⩽ 8312 GeV 2 and x (= P h E beam ) > 0.08 . A large scaling violation was observed, which was used to extract the strong coupling constant in second order QCD: α s ( M Z ) = 0.118 ± 0.005. The corresponding QCD scale for five quark flavours is: Λ (5) MS = 230 ± 60 MeV .

2 data tables

No description provided.

Extraction of strong coupling constant ALP_S and the LAMQCD)MSBAR values.


A Study of jet rates and measurement of alpha-s at the Z0 resonance

Lauber, Jan A. ; Nauenberg, U. ;
SLAC-0413, 1993.
Inspire Record 353248 DOI 10.17182/hepdata.18664

This experiment was performed with the SLD detector at the Stanford Linear Accelerator Center. Only charged tracks measured in the central drift chamber were used for the measurement of the jet production rates. The value of the strong coupling $\alpha_s (M_{Z^0})$ is determined from the production rates of jets in hadronic $Z^0$ decays in $e^+e^-$ annihilations. The relative jet rates are obtained using the JADE-type algorithms. The results are compared with the jet rates obtained from a new jet algorithm proposed by N. Brown et al. called the "Durham" algorithm. The data can be well described by $\mathcal{O}(\alpha^2_s)$ QCD calculations and by QCD shower model calculations. A fit of the theoretical predictions to the data taken with the SLD yields a value$\alpha_s(M_{Z^0})$ = $0.120 \pm 0.002(stat.) \pm 0.003(exp.)^{+0.011}_{-0.009}(theor.)$ The error is dominated by the theoretical uncertainties. The measurement is compared with results from other experiments and it is shown that the value obtained for $\alpha_s$ agrees well with these results and furthermore supports the evidence for the running of the strong coupling, consistent with the non-Abelian nature of QCD. The Stanford Linear Collider (SLC) can deliver partially longitudinally polarized electrons to the interaction point. Jet production rates and values for a, are calculated both for right-handed and left-handed initial state electrons. All results are consistent with the unpolarized result, as predicted by the Standard Model.

9 data tables

Jet production rates using the JADE recombination scheme.

Jet production rates using the DURHAM recombination scheme.

Jet production rates using the E recombination scheme.

More…

Determination of alpha-s using the next-to-leading log approximation of QCD

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 59 (1993) 21-34, 1993.
Inspire Record 354909 DOI 10.17182/hepdata.50115

A new measurement of αs is obtained from the distributions in thrust, heavy jet mass, energy-energy correlation and two recently introduced jet broadening variables following a method proposed by Cata

7 data tables

Thrust distribution corrected for detector acceptance and initial state photon radiation.

Heavy jet mass (RHO) distribution (THRUST definition) corrected for detect or acceptance and initial state photon radiation.

Heavy jet mass (RHOM) distribution (MASS definition) corrected for detectoracceptance and initial state photon radiation.

More…

Determination of alpha-s from hadronic event shapes measured on the Z0 resonance

The L3 collaboration Adrian, O. ; Aguilar-Benitez, M. ; Ahlen, S. ; et al.
Phys.Lett.B 284 (1992) 471-481, 1992.
Inspire Record 334951 DOI 10.17182/hepdata.29157

We present a study of the global event shape variables thrust and heavy jet mass, of energy-energy correlations and of jet multiplicities based on 250 000 hadronic Z 0 decays. The data are compared to new QCD calculations including resummation of leading and next-to-leading logarithms to all orders. We determine the strong coupling constant α s (91.2 GeV) = 0.125±0.003 (exp) ± 0.008 (theor). The first error is the experimental uncertainty. The second error is due to hadronization uncertainties and approximations in the calculations of the higher order corrections.

3 data tables

Measured EEC distribution corrected for detector effects and photon radiation. Errors are combined statistical and systematic uncertainties.

Measured average jet multiplicities for the K_PT algorithm. All numbers are corrected for detector effects and photon radiation. Errors are combined statistical and systematic uncertainties.

Value of strong coupling constant, alpha_s, determined from the data. First error is experimental, the second is theoretical.


A Global determination of alpha-s (M(z0)) at LEP

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 55 (1992) 1-24, 1992.
Inspire Record 333079 DOI 10.17182/hepdata.14606

The value of the strong coupling constant,$$\alpha _s (M_{Z^0 } )$$, is determined from a study of 15 d

16 data tables

Differential jet mass distribution for the heavier jet using method T. The data are corrected for the finite acceptance and resolution of the detector and for initial state photon radiation.

Differential jet mass distribution for the jet mass difference using methodT. The data are corrected for the finite acceptance and resolution of the detec tor and for initial state photon radiation.

Differential jet mass distribution for the heavier jet using method M. The data are corrected for the finite acceptance and resolution of the detector and for initial state photon radiation.

More…

Measurement of alpha-s in hadronic Z decays using all orders resummed predictions

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Phys.Lett.B 284 (1992) 163-176, 1992.
Inspire Record 333334 DOI 10.17182/hepdata.48421

None

1 data table

Three different methods are used for extraction Alphas value (see text for details). Systematical errors with C=HADR and C=THEOR are due to hadronization correction and theoretical uncertainties.


Determination of $alpha_{s}$ in second order {QCD} from hadronic $Z$ decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Z.Phys.C 54 (1992) 55-74, 1992.
Inspire Record 333272 DOI 10.17182/hepdata.14603

Distributions of event shape variables obtained from 120600 hadronicZ decays measured with the DELPHI detector are compared to the predictions of QCD based event generators. Values of the strong coupling constant αs are derived as a function of the renormalization scale from a quantitative analysis of eight hadronic distributions. The final result, αs(MZ), is based on second order perturbation theory and uses two hadronization corrections, one computed with a parton shower model and the other with a QCD matrix element model.

9 data tables

Experimental differential Thrust distributions.

Experimental differential Oblateness distributions.

Experimental differential C-parameter distributions.

More…

An Improved measurement of alpha-s (M (Z0)) using energy correlations with the OPAL detector at LEP

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 276 (1992) 547-564, 1992.
Inspire Record 321657 DOI 10.17182/hepdata.29245

We report on an improved measurement of the value of the strong coupling constant σ s at the Z 0 peak, using the asymmetry of the energy-energy correlation function. The analysis, based on second-order perturbation theory and a data sample of about 145000 multihadronic Z 0 decays, yields α s ( M z 0 = 0.118±0.001(stat.)±0.003(exp.syst.) −0.004 +0.0009 (theor. syst.), where the theoretical systematic error accounts for uncertainties due to hadronization, the choice of the renormalization scale and unknown higher-order terms. We adjust the parameters of a second-order matrix element Monte Carlo followed by string hadronization to best describe the energy correlation and other hadronic Z 0 decay data. The α s result obtained from this second-order Monte Carlo is found to be unreliable if values of the renormalization scale smaller than about 0.15 E cm are used in the generator.

2 data tables

Value of LAMBDA(MSBAR) and ALPHA_S.. The first systematic error is experimental, the second is from theory.

The EEC and its asymmetry at the hadron level, unfolded for initial-state radiation and for detector acceptance and resolution. Errors include full statistical and systematic uncertainties.


Properties of multi - hadronic events with a final state photon at s**(1/2) = M (Z0)

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 54 (1992) 193-210, 1992.
Inspire Record 322027 DOI 10.17182/hepdata.14650

The properties of final state photons in multihadronic decays of theZ0 and those of the recoiling hadronic system are discussed and compared with theoretical expectations. The yield of two and three jet events with final state photons is found to be in good agreement with the expectation from a matrix element calculation ofO(ααs. Uncertainties in the interpretation of the theoretical calculation do not yet permit a final assessment of events with just one reconstructed jet. Comparing the rates of two jet events with a photon to those of three jet events in the inclusive multihadronic sample, the strong coupling constant in second order is determined asαs\((M_{Z^0 } )\)=0.122±0.010, taking into account only the statistical and experimental systematic errors. It is found that an abelian model of the strong interaction does not describe the data. The comparison of the total yield and the jet rates with QCD shower programs shows better agreement with the ARIADNE model than with the JETSET model. Both programs are found to describe well the photon properties and the properties of the residual hadronic event.

4 data tables

No description provided.

No description provided.

No description provided.

More…

Determination of alpha-s from energy-energy correlations measured on the Z0 resonance.

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 257 (1991) 469-478, 1991.
Inspire Record 324427 DOI 10.17182/hepdata.29467

We present a study of energy-energy correlations based on 83 000 hadronic Z 0 decays. From this data we determine the strong coupling constant α s to second order QCD: α s (91.2 GeV)=0.121±0.004(exp.)±0.002(hadr.) −0.006 +0.009 (scale)±0.006(theor.) from the energy-energy correlation and α s (91.2 GeV)=0.115±0.004(exp.) −0.004 +0.007 (hadr.) −0.000 +0.002 (scale) −0.005 +0.003 (theor.) from its asymmetry using a renormalization scale μ 1 =0.1 s . The first error (exp.) is the systematic experimental uncertainly, the statistical error is negligible. The other errors are due to hadronization (hadr.), renormalization scale (scale) uncertainties, and differences between the calculated second order corrections (theor.).

3 data tables

Statistical errors are equal to or less than 0.6 pct in each bin. There is also a 4 pct systematic uncertainty.

ALPHA_S from the EEC measurement.. The first error given is the experimental error which is mainly the overall systematic uncertainty: the first (DSYS) error is due to hadronization, the second to the renormalization scale, and the third differences between the calculated and second order corrections.

ALPHA_S from the AEEC measurement.. The first error given is the experimental error which is mainly the overall systematic uncertainty: the first (DSYS) error is due to hadronization, the second to the renormalization scale, and the third differences between the calculated and second order corrections.


Measurement of alpha-s from the structure of particle clusters produced in hadronic Z decays

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Phys.Lett.B 257 (1991) 479-491, 1991.
Inspire Record 302771 DOI 10.17182/hepdata.29466

Using 106 000 hadronic events obtained with the ALEPH detector at LEP at energies close to the Z resonance peak, the strong coupling constant α s is measured by an analysis of energy-energy correlations (EEC) and the global event shape variables thrust, C -parameter and oblateness. It is shown that the theoretical uncertainties can be significantly reduced if the final state particles are first combined in clusters using a minimum scaled invariant mass cut, Y cut , before these variables are computed. The combined result from all shape variables of pre-clustered events is α s ( M Z 2 = 0.117±0.005 for a renormalization scale μ= 1 2 M Z . For μ values between M Z and the b-quark mass, the result changes by −0.009 +0.006 .

2 data tables

No description provided.

Error contains both experimental and theoretical errors.


Measurement of the strong coupling constant alpha-s from global event shape variables of hadronic Z decays

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Phys.Lett.B 255 (1991) 623-633, 1991.
Inspire Record 301661 DOI 10.17182/hepdata.29491

An analysis of global event-shape variables has been carried out for the reaction e + e − →Z 0 →hadrons to measure the strong coupling constant α s . This study is based on 52 720 hadronic events obtained in 1989/90 with the ALEPH detector at the LEP collider at energies near the peak of the Z-resonance. In order to determine α s , second order QCD predictions modified by effects of perturbative higher orders and hadronization were fitted to the experimental distributions of event-shape variables. From a detailed analysis of the theoretical uncertainties we find that this approach is best justified for the differential two-jet rate, from which we obtain α s ( M Z 2 ) = 0.121 ± 0.002(stat.)±0.003(sys.)±0.007(theor.) using a renormalization scale ω = 1 2 M Z . The dependence of α s ( M Z 2 ) on ω is parameterized. For scales m b <ω< M Z the result varies by −0.012 +0.007 .

1 data table

The second DSYS error is the theoretical error.


A Study of the recombination scheme dependence of jet production rates and of alpha-s (m(Z0)) in hadronic Z0 decays

The OPAL collaboration Akrawy, M.Z. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 49 (1991) 375-384, 1991.
Inspire Record 299833 DOI 10.17182/hepdata.15085

The error includes the experimental uncertainties (±0.003), uncertainties of hadronisation corrections and of the degree of parton virtualities to which the data are corrected, as well as the uncertainty of choosing the renormalisation scale.

9 data tables

Jet production rates using the E0 recombination scheme.

Jet production rates using the E recombination scheme.

Jet production rates using the p0 recombination scheme.

More…

A Measurement of energy correlations and a determination of alpha-s (M2 (Z0)) in e+ e- annihilations at s**(1/2) = 91-GeV

The OPAL collaboration Akrawy, M.Z. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 252 (1990) 159-169, 1990.
Inspire Record 298707 DOI 10.17182/hepdata.29525

From an analysis of multi-hadron events from Z 0 decays, values of the strong coupling constant α s ( M 2 Z 0 )=0.131±0.006 (exp)±0.002(theor.) and α s ( M z 0 2 ) = −0.009 +0.007 (exp.) −0.002 +0.006 (theor.) are derived from the energy-energy correlation distribution and its asymmetry, respectively, assuming the QCD renormalization scale μ = M Z 0 . The theoretical error accounts for differences between O ( α 2 s ) calculations. A two parameter fit Λ MS and the renormalization scale μ leads to Λ MS =216±85 MeV and μ 2 s =0.027±0.013 or to α s ( M 2 Z 0 )=0.117 +0.006 −0.008 (exp.) for the energy-energy correlation distribution. The energy-energy correlation asymmetry distribution is insensitive to a scale change: thus the α s value quoted above for this variable includes the theoretical uncertainty associated with the renormalization scale.

3 data tables

Data are at the hadron level, unfolded for initial-state radiation and for detector acceptance and resolution. Note that the systematic errors between bins are correlated.

Alpha-s determined from the EEC measurements. The systematic error is an error in the theory.

Alpha-s determined from the AEEC measurements. The systematic error is an error in the theory.


Energy-energy correlations in hadronic final states from Z0 decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Phys.Lett.B 252 (1990) 149-158, 1990.
Inspire Record 300161 DOI 10.17182/hepdata.29534

We have studied the energy-energy angular correlations in hadronic final states from Z 0 decay using the DELPHI detector at LEP. From a comparison with Monte Carlo calculations based on the exact second order QCD matrix element and string fragmentation we find that Λ (5) MS =104 +25 -20 ( stat. ) +25 -20( syst. ) +30 00 ) theor. ) . MeV, which corresponds to α s (91 GeV)=0.106±0.003(stat.)±0.003(syst.) +0.003 -0.000 (theor). The theoretical error stems from different choices for the renormalization scale of α s . In the Monte Carlo simulation the scale of α s as well as the fragmentation parameters have been optimized to described reasonably well all aspects of multihadron production.

2 data tables

Data requested from the authors.

Values of LAMBDA-MSBAR(5) and ALPHA-S(91 GeV) deduced from the EEC measurements. The second systematic error is from the theory.


Determination of alpha-s from jet multiplicities measured on the Z0 resonance

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 248 (1990) 464-472, 1990.
Inspire Record 298078 DOI 10.17182/hepdata.29651

We present a study of jet multiplicities based on 37 000 hadronic Z 0 boson decays. From this data we determine the strong coupling constant α s =0.115±0.005 ( exp .) −0.010 +0.012 (theor.) to second order QCD at √ s =91.22GeV.

2 data tables

Errors are combined statistical and systematic uncertainties.

No description provided.


Measurement of electroweak parameters from Z decays into Fermion pairs

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Z.Phys.C 48 (1990) 365-392, 1990.
Inspire Record 298414 DOI 10.17182/hepdata.47314

We report on the properties of theZ resonance from 62 500Z decays into fermion pairs collected with the ALEPH detector at LEP, the Large Electron-Positron storage ring at CERN. We findMZ=(91.193±0.016exp±0.030LEP) GeV, ΓZ=(2497±31) MeV, σhad0=(41.86±0.66)nb, and for the partial widths Γinv=(489±24) MeV, Γhad(1754±27) MeV, Γee=(85.0±1.6)MeV, Γμμ=(80.0±2.5) MeV, and Γττ=(81.3±2.5) MeV, all in good agreement with the Standard Model. Assuming lepton universality and using a lepton sample without distinction of the final state we measure Γu=(84.3±1.3) MeV. The forward-backward asymmetry in leptonic decays is used to determine the vector and axial-vector weak coupling constants of leptors,gv2(MZ2)=(0.12±0.12)×10−2 andgA2(MZ2)=0.2528±0.0040. The number of light neutrino species isNν=2.91±0.13; the electroweak mixing angle is sin2θW(MZ2)=0.2291±0.0040.

8 data tables

Hadronic cross section from the charged track selection trigger.

Hadronic cross section from the calorimeter selection trigger.

Averaged hadronic cross section.

More…

A Comparison of jet production rates on the Z0 resonance to perturbative QCD

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Phys.Lett.B 247 (1990) 167-176, 1990.
Inspire Record 297698 DOI 10.17182/hepdata.29653

The production rates for 2-, 3-, 4- and 5-jet hadronic final states have been measured with the DELPHI detector at the e + e − storage ring LEP at centre of mass energies around 91.5 GeV. Fully corrected data are compared to O(α 2 s ) QCD matrix element calculations and the QCD scale parameter Λ MS is determined for different parametrizations of the renormalization scale ω 2 . Including all uncertainties our result is α s ( M 2 Z )=0.114±0.003[stat.]±0.004[syst.]±0.012[theor.].

2 data tables

Corrected jet rates.

Second systematic error is theoretical.


Determination of $\alpha^- s$ From a Differential Jet Multiplicity Distribution at {SLC} and {PEP}

Komamiya, Sachio ; Le Diberder, F. ; Abrams, G.S. ; et al.
Phys.Rev.Lett. 64 (1990) 987, 1990.
Inspire Record 283630 DOI 10.17182/hepdata.19937

We measured the differential jet-multiplicity distribution in e+e− annihilation with the Mark II detector. This distribution is compared with the second-order QCD prediction and αs is determined to be 0.123±0.009±0.005 at √s≊MZ (at the SLAC Linear Collider) and 0.149±0.002±0.007 at √s=29 GeV (at the SLAC storage ring PEP). The running of αs between these two center-of-mass energies is consistent with the QCD prediction.

2 data tables

DIFFERENTIAL JET MULTIPLICITIES.

DIFFERENTIAL JET MULTIPLICITIES.