Search for scalar leptoquarks in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS experiment

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
New J.Phys. 18 (2016) 093016, 2016.
Inspire Record 1462258 DOI 10.17182/hepdata.73322

An inclusive search for a new-physics signature of lepton-jet resonances has been performed by the ATLAS experiment. Scalar leptoquarks, pair-produced in $pp$ collisions at $\sqrt{s}$ = 13 TeV at the Large Hadron Collider, have been considered. An integrated luminosity of 3.2 fb$^{-1}$, corresponding to the full 2015 dataset was used. First (second) generation leptoquarks were sought in events with two electrons (muons) and two or more jets. The observed event yield in each channel is consistent with Standard Model background expectations. The observed (expected) lower limits on the leptoquark mass at 95% confidence level are 1100 GeV and 1050 GeV (1160 GeV and 1040 GeV) for first and second generation leptoquarks, respectively, assuming a branching ratio into a charged lepton and a quark of 100%. Upper limits on the aforementioned branching ratio are also given as a function of leptoquark mass. Compared with the results of earlier ATLAS searches, the sensitivity is increased for leptoquark masses above 860 GeV, and the observed exclusion limits confirm and extend the published results.

4 data tables

Normalisation factors for the main backgrounds obtained from the combined fit in each of the channels. The total uncertainty is given.

Search for the first generation leptoquarks (LQs). Event yields in the Z control region (CR), ttbar CR and in the signal region (SR). Each CR is treated as one bin in the profile likelihood fit. The SR is split to 7 bins according to $m_{\text{LQ}}^{\text{min}}$ for the fit. The table below shows the total number of events in each CR. For the SR, it shows the number of events per 100 GeV as a function of $m_{\text{LQ}}^{\text{min}}$. The background expectations are scaled by a scale factor extracted from the fit. However, the uncertainties shown are the pre-fit ones. The data event yield uncertainty is statistical (gaussian). The background uncertainty consists of all the experimental and theoretical components summed in quadrature. The uncertainty of the fit-extracted background scale factor is also added in quadrature.

Search for the second generation leptoquarks (LQs). Event yields in the Z control region (CR), ttbar CR and in the signal region (SR). Each CR is treated as one bin in the profile likelihood fit. The SR is split to 7 bins according to $m_{\text{LQ}}^{\text{min}}$ for the fit. The table below shows the total number of events in each CR. For the SR, it shows the number of events per 100 GeV as a function of $m_{\text{LQ}}^{\text{min}}$. The background expectations are scaled by a scale factor extracted from the fit. However, the uncertainties shown are the pre-fit ones. The data event yield uncertainty is statistical (gaussian). The background uncertainty consists of all the experimental and theoretical components summed in quadrature. The uncertainty of the fit-extracted background scale factor is also added in quadrature.

More…

Energy Dependence of Intermittency for Charged Hadrons in Au+Au Collisions at RHIC

The STAR collaboration Abdulhamid, Muhammad ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Lett.B 845 (2023) 138165, 2023.
Inspire Record 2626682 DOI 10.17182/hepdata.137849

Density fluctuations near the QCD critical point can be probed via an intermittency analysis in relativistic heavy-ion collisions. We report the first measurement of intermittency in Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 7.7-200 GeV measured by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The scaled factorial moments of identified charged hadrons are analyzed at mid-rapidity and within the transverse momentum phase space. We observe a power-law behavior of scaled factorial moments in Au$+$Au collisions and a decrease in the extracted scaling exponent ($\nu$) from peripheral to central collisions. The $\nu$ is consistent with a constant for different collisions energies in the mid-central (10-40%) collisions. Moreover, the $\nu$ in the 0-5% most central Au$+$Au collisions exhibits a non-monotonic energy dependence that reaches a possible minimum around $\sqrt{s_\mathrm{_{NN}}}$ = 27 GeV. The physics implications on the QCD phase structure are discussed.

53 data tables

The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the most central (0-5\%) Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 7.7 GeV.

The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the most central (0-5\%) Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 19.6 GeV.

The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the most central (0-5\%) Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 39 GeV.

More…

Search for TeV-scale gravity signatures in high-mass final states with leptons and jets with the ATLAS detector at $\sqrt{s}=13$ TeV

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 760 (2016) 520-537, 2016.
Inspire Record 1468067 DOI 10.17182/hepdata.77086

A search for physics beyond the Standard Model, in final states with at least one high transverse momentum charged lepton (electron or muon) and two additional high transverse momentum leptons or jets, is performed using 3.2 fb$^{-1}$ of proton--proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015 at $\sqrt{s}=13$ TeV. The upper end of the distribution of the scalar sum of the transverse momenta of leptons and jets is sensitive to the production of high-mass objects. No excess of events beyond Standard Model predictions is observed. Exclusion limits are set for models of microscopic black holes with two to six extra dimensions.

10 data tables

Background fit results for regions SR-2TeV ( sumPT > 2 TeV) and SR-3TeV ( sumPT > 3 TeV) for the electron and muons channels. The errors shown are the statistical plus systematic uncertainties. The uncertainty in the total background count includes correlations between nuisance parameters and so does not reflect a quadrature sum of the uncertainties in the individual background components.

The sumPT distribution in the W+jets control region (electron channel). Expected background yields are given along with the total background uncertainty. The ttbar, W+jets and Z+jets backgrounds are normalised by the factors 0.95, 0.81 and 1.01 as obtained from the background likelihood fit. The single-top-quark and diboson background normalisations are taken from the simulation. The multijet background is obtained using a data-driven method. Additionally, the likelihood fit may constrain nuisance parameters for certain systematic uncertainties, altering the normalisation and shape of some of the distributions.

The sumPT distribution in the W+jets control region (muon channel). Expected background yields are given along with the total background uncertainty. The ttbar, W+jets and Z+jets backgrounds are normalised by the factors 0.95, 0.81 and 1.01 as obtained from the background likelihood fit. The single-top-quark and diboson background normalisations are taken from the simulation. The multijet background is obtained using a data-driven method. Additionally, the likelihood fit may constrain nuisance parameters for certain systematic uncertainties, altering the normalisation and shape of some of the distributions.

More…

Beam-energy dependence of identified two-particle angular correlations in Au+Au collisions at RHIC

The STAR collaboration Adam, Jaroslav ; Adams, Joseph ; Agakishiev, Geydar ; et al.
Phys.Rev.C 101 (2020) 014916, 2020.
Inspire Record 1740846 DOI 10.17182/hepdata.105909

The two-particle angular correlation functions, $R_2$, of pions, kaons, and protons in Au+Au collisions at $\sqrt{s_{NN}}=$ 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV were measured by the STAR experiment at RHIC. These correlations were measured for both like-sign and unlike-sign charge combinations and versus the centrality. The correlations of pions and kaons show the expected near-side ({\it i.e.}, at small relative angles) peak resulting from short-range mechanisms. The amplitudes of these short-range correlations decrease with increasing beam energy. However, the proton correlation functions exhibit strong anticorrelations in the near-side region. This behavior is observed for the first time in an A+A collision system. The observed anticorrelation is $p_{T}$-independent and decreases with increasing beam energy and centrality. The experimental results are also compared to the Monte Carlo models UrQMD, Hijing, and AMPT.

44 data tables

Angular correlation function R2(∆y,∆φ) of like-sign pions in Au+Au collisions at mid centrality 30%-40% and 0.2 < pT < 2.0 GeV/c at 7.7 GeV

Angular correlation function R2(∆y,∆φ) of like-sign pions in Au+Au collisions at mid centrality 30%-40% and 0.2 < pT < 2.0 GeV/c at 11.5 GeV

Angular correlation function R2(∆y,∆φ) of like-sign pions in Au+Au collisions at mid centrality 30%-40% and 0.2 < pT < 2.0 GeV/c at 14.5 GeV

More…

Beam energy dependence of (anti-)deuteron production in Au+Au collisions at RHIC

The STAR collaboration Adam, Jaroslav ; Adams, Joseph ; Agakishiev, Geydar ; et al.
Phys.Rev.C 99 (2019) 064905, 2019.
Inspire Record 1727273 DOI 10.17182/hepdata.105510

We report the energy dependence of mid-rapidity (anti-)deuteron production in Au+Au collisions at $\sqrt{s_\text{NN}} =\ $7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV, measured by the STAR experiment at RHIC. The yield of deuterons is found to be well described by the thermal model. The collision energy, centrality, and transverse momentum dependence of the coalescence parameter $B_2$ are discussed. We find that the values of $B_2$ for anti-deuterons are systematically lower than those for deuterons, indicating that the correlation volume of anti-baryons is larger than that of baryons at $\sqrt{s_\text{NN}}$ from 19.6 to 39 GeV. In addition, values of $B_2$ are found to vary with collision energy and show a broad minimum around $\sqrt{s_\text{NN}}=\ $20 to 40 GeV, which might imply a change of the equation of state of the medium in these collisions.

111 data tables

'transverse momentum spectra for deuterons in Au+Au collisions'

'transverse momentum spectra for deuterons in Au+Au collisions'

'transverse momentum spectra for deuterons in Au+Au collisions'

More…

Beam energy dependence of rapidity-even dipolar flow in Au+Au collisions

The STAR collaboration Adam, J. ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Lett.B 784 (2018) 26-32, 2018.
Inspire Record 1669807 DOI 10.17182/hepdata.100168

New measurements of directed flow for charged hadrons, characterized by the Fourier coefficient \vone, are presented for transverse momenta $\mathrm{p_T}$, and centrality intervals in Au+Au collisions recorded by the STAR experiment for the center-of-mass energy range $\mathrm{\sqrt{s_{_{NN}}}} = 7.7 - 200$ GeV. The measurements underscore the importance of momentum conservation and the characteristic dependencies on $\mathrm{\sqrt{s_{_{NN}}}}$, centrality and $\mathrm{p_T}$ are consistent with the expectations of geometric fluctuations generated in the initial stages of the collision, acting in concert with a hydrodynamic-like expansion. The centrality and $\mathrm{p_T}$ dependencies of $\mathrm{v^{even}_{1}}$, as well as an observed similarity between its excitation function and that for $\mathrm{v_3}$, could serve as constraints for initial-state models. The $\mathrm{v^{even}_{1}}$ excitation function could also provide an important supplement to the flow measurements employed for precision extraction of the temperature dependence of the specific shear viscosity.

5 data tables

$v_{11}$ vs. $p_{T}^{b}$ for several selections of $p_{T}^{a}$ for 0-5 central Au+Au collisions at $\sqrt{s_{_{NN}}} = 200$ GeV. The curve shows the result of the simultaneous fit.

Extracted values of $v^{even}_{1}$ vs. $p_{T}$ for 0-10 central Au+Au collisions for several values of $\sqrt{s_{_{NN}}}$ as indicated; the $v^{even}_{1}$ values are obtained via fits. The curve in panel (a) shows the result from a viscous hydrodynamically based predictions.

(a) Centrality dependence of $v^{even}_{1}$ for $0.4 \lt p_{T} \lt 0.7$ GeV/c for Au+Au collisions at $\sqrt{s_{_{NN}}} = 200, 39$ and $19.6$ GeV; (b) $K$ vs. $\langle N_{ch} \rangle^{-1}$ for the $v^{even}_{1}$ values shown in (a). The $\langle N_{ch} \rangle$ values correspond to the centrality intervals indicated in panel (a).

More…

Version 2
Strange hadron production in Au+Au collisions at $\sqrt{s_{_{\mathrm{NN}}}}$ = 7.7, 11.5, 19.6, 27, and 39 GeV

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.C 102 (2020) 034909, 2020.
Inspire Record 1738953 DOI 10.17182/hepdata.94313

We present STAR measurements of strange hadron ($\mathrm{K}^{0}_{\mathrm S}$, $\Lambda$, $\overline{\Lambda}$, $\Xi^-$, $\overline{\Xi}^+$, $\Omega^-$, $\overline{\Omega}^+$, and $\phi$) production at mid-rapidity ($|y| < 0.5$) in Au+Au collisions at $\sqrt{s_{_{\mathrm{NN}}}}$ = 7.7 - 39 GeV from the Beam Energy Scan Program at the Relativistic Heavy Ion Collider (RHIC). Transverse momentum spectra, averaged transverse mass, and the overall integrated yields of these strange hadrons are presented versus the centrality and collision energy. Antibaryon-to-baryon ratios ($\overline{\Lambda}$/$\Lambda$, $\overline{\Xi}^+$/$\Xi^-$, $\overline{\Omega}^+$/$\Omega^-$) are presented as well, and used to test a thermal statistical model and to extract the temperature normalized strangeness and baryon chemical potentials at hadronic freeze-out ($\mu_{B}/T_{\rm ch}$ and $\mu_{S}/T_{\rm ch}$) in central collisions. Strange baryon-to-pion ratios are compared to various model predictions in central collisions for all energies. The nuclear modification factors ($R_{\textrm{CP}}$) and antibaryon-to-meson ratios as a function of transverse momentum are presented for all collision energies. The $\mathrm{K}^{0}_{\mathrm S}$$R_{\textrm{CP}}$ shows no suppression for $p_{\rm T}$ up to 3.5 $\mathrm{GeV} / c$ at energies of 7.7 and 11.5 GeV. The $\overline{\Lambda}$/$\mathrm{K}^{0}_{\mathrm S}$ ratio also shows baryon-to-meson enhancement at intermediate $p_{\rm T}$ ($\approx$2.5 $\mathrm{GeV} / c$) in central collisions at energies above 19.6 GeV. Both observations suggest that there is likely a change of the underlying strange quark dynamics at collision energies below 19.6 GeV.

718 data tables

Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)

Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)

Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)

More…

Azimuthal anisotropy measurement of (multi-)strange hadrons in Au+Au collisions at $\sqrt{s_{\text{NN}}}$ = 54.4 GeV

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.C 107 (2023) 024912, 2023.
Inspire Record 2635688 DOI 10.17182/hepdata.130768

Azimuthal anisotropy of produced particles is one of the most important observables used to access the collective properties of the expanding medium created in relativistic heavy-ion collisions. In this paper, we present second ($v_{2}$) and third ($v_{3}$) order azimuthal anisotropies of $K_{S}^{0}$, $\phi$, $\Lambda$, $\Xi$ and $\Omega$ at mid-rapidity ($|y|<$1) in Au+Au collisions at $\sqrt{s_{\text{NN}}}$ = 54.4 GeV measured by the STAR detector. The $v_{2}$ and $v_{3}$ are measured as a function of transverse momentum and centrality. Their energy dependence is also studied. $v_{3}$ is found to be more sensitive to the change in the center-of-mass energy than $v_{2}$. Scaling by constituent quark number is found to hold for $v_{2}$ within 10%. This observation could be evidence for the development of partonic collectivity in 54.4 GeV Au+Au collisions. Differences in $v_{2}$ and $v_{3}$ between baryons and anti-baryons are presented, and ratios of $v_{3}$/$v_{2}^{3/2}$ are studied and motivated by hydrodynamical calculations. The ratio of $v_{2}$ of $\phi$ mesons to that of anti-protons ($v_{2}(\phi)/v_{2}(\bar{p})$) shows centrality dependence at low transverse momentum, presumably resulting from the larger effects from hadronic interactions on anti-proton $v_{2}$.

13 data tables

$v_{3}(p_{T})$ for $\phi$ (Centrality:10-40%)

$v_{3}(p_{T})$ for $\phi$ (Centrality:0-80%)

$v_{2}(p_{T})$ for $\Xi^{-}$ (Centrality:0-10%)

More…

Version 2
Collision energy dependence of second-order off-diagonal and diagonal cumulants of net-charge, net-proton and net-kaon multiplicity distributions in Au+Au collisions

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.C 100 (2019) 014902, 2019.
Inspire Record 1724809 DOI 10.17182/hepdata.105908

We report the first measurements of a complete second-order cumulant matrix of net-charge, net-proton, and net-kaon multiplicity distributions for the first phase of the beam energy scan program at RHIC. This includes the centrality and, for the first time, the pseudorapidity window dependence of both diagonal and off-diagonal cumulants in Au+Au collisions at \sNN~= 7.7-200 GeV. Within the available acceptance of $|\eta|<0.5$, the cumulants grow linearly with the pseudorapidity window. Relative to the corresponding measurements in peripheral collisions, the ratio of off-diagonal over diagonal cumulants in central collisions indicates an excess correlation between net-charge and net-kaon, as well as between net-charge and net-proton. The strength of such excess correlation increases with the collision energy. The correlation between net-proton and net-kaon multiplicity distributions is observed to be negative at \sNN~= 200 GeV and change to positive at the lowest collision energy. Model calculations based on non-thermal (UrQMD) and thermal (HRG) production of hadrons cannot explain the data. These measurements will help map the QCD phase diagram, constrain hadron resonance gas model calculations, and provide new insights on the energy dependence of baryon-strangeness correlations. An erratum has been added to address the issue of self-correlation in the previously considered efficiency correction for off-diagonal cumulant measurement. Previously considered unidentified (net-)charge correlation results ($\sigma^{11}_{Q,p}$ and $\sigma^{11}_{Q,k})$ are now replaced with identified (net-)charge correlation ($\sigma^{11}_{Q^{PID},p}$ and $\sigma^{11}_{Q^{PID},k}$)

31 data tables

The dependence of efficiency corrected second-order diagonal and off-diagonal cumulants on the width of the η-window. The filled and open circles represent 0-5% and 70-80% central collisions respectively. The shaded band represents the systematic uncertainty. The statistical uncertainties are within the marker size and solid lines are UrQMD calculations.

The dependence of efficiency corrected second-order diagonal and off-diagonal cumulants on the width of the η-window. The filled and open circles represent 0-5% and 70-80% central collisions respectively. The shaded band represents the systematic uncertainty. The statistical uncertainties are within the marker size and solid lines are UrQMD calculations.

Centrality dependence of efficiency corrected second-order diagonal cumulants of net-proton, net-kaon and net-pion (top to bottom) of the multiplicity distributions for Au+Au collisions at GeV (left to right) within kinematic range of |η| < 0.5 and 0.4 < pT < 1.6 GeV/c. The boxes represent the systematic error. The statistical error bars are within the marker size. The dashed lines represent scaling predicted by central limit theorem and the solid lines are UrQMD calculations.

More…

Collision-system and beam-energy dependence of anisotropic flow fluctuations

The STAR collaboration Abdallah, Mohamed ; Adam, Jaroslav ; Adamczyk, Leszek ; et al.
Phys.Rev.Lett. 129 (2022) 252301, 2022.
Inspire Record 2017211 DOI 10.17182/hepdata.116554

Elliptic flow measurements from two-, four- and six-particle correlations are used to investigate flow fluctuations in collisions of U+U at $\sqrt{s_{\rm NN}}$= 193 GeV, Cu+Au at $\sqrt{s_{\rm NN}}$= 200 GeV and Au+Au spanning the range $\sqrt{s_{\rm NN}}$= 11.5 - 200 GeV. The measurements show a strong dependence of the flow fluctuations on collision centrality, a modest dependence on system size, and very little if any, dependence on particle species and beam energy. The results, when compared to similar LHC measurements, viscous hydrodynamic calculations, and T$\mathrel{\protect\raisebox{-2.1pt}{R}}$ENTo model eccentricities, indicate that initial-state-driven fluctuations predominate the flow fluctuations generated in the collisions studied.

11 data tables

The Au+Au 200 GeV measurements of the two and four-particle elliptic flow and the elliptic flow fluctuations of the $\pi$ particle.

The Au+Au 200 GeV measurements of the two and four-particle elliptic flow and the elliptic flow fluctuations of the K particle.

The Au+Au 200 GeV measurements of the two and four-particle elliptic flow and the elliptic flow fluctuations of the p particle.

More…