A Measurement of charged particle multiplicity in Z0 --> c anti-c and Z0 --> b anti-b events

The OPAL collaboration Akers, R. ; Alexander, G. ; Allison, John ; et al.
Phys.Lett.B 352 (1995) 176-186, 1995.
Inspire Record 393953 DOI 10.17182/hepdata.48168

We have used data from the OPAL detector at LEP to reconstruct D ∗ mesons and secondary vertices in jets. We have studied the hemispheres of the events opposite these jets and obtain values of the hemisphere charged particle multiplicity in Z 0 → u u , d d , s s , Z 0 → c c and Z 0 → b b events of n uds = 10.41 ± 0.06 ± 0.09 ± 0.19 ; n c = 10.76 ± 0.20 ± 0.14 ± 0.19 ; n b = 11.81 ± 0.01 ± 0.12 ± 0.21 where the first errors are statistical, the second systmatic and the third a common scale uncertainty. We find the difference in total charged particle multiplicity between c and b quark events and light (u, d, s) quark events to be δ cl = 0.69 ± 0.51 ± 0.35; δ bl = 2.79 ± 0.12 ± 0.27. These results are compared to the predictions of various models and QCD based calculations.

2 data tables

Second systematic error is a common scale uncertainty.

Difference in the TOTAL charged particle multiplicity.


A Measurement of the production of D*+- mesons on the Z0 resonance

The OPAL collaboration Akers, R. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 67 (1995) 27-44, 1995.
Inspire Record 382219 DOI 10.17182/hepdata.48317

We have studied the production of D*± mesons in a sample of 1.25 million multihadronic decays of the Z0, in which 1969 candidates have been identified. We have determined the total multiplicity of charged D* mesons in multihadronic Z0 decays to be

5 data tables

No description provided.

Multiplicity data uncorrected for decay branching ratios.

No description provided.

More…

An Improved measurement of R(b) using a double tagging method

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 74 (1997) 1-17, 1997.
Inspire Record 427104 DOI 10.17182/hepdata.47645

This paper describes an update of the double tagging measurement of the fraction, Rb, of Z0 → bb̅ events in hadronic Z0 decays, with statistics improved by including the data collected in 1994. The presence of electrons or muons from semileptonic decays of bottom hadrons and the detection of bottom hadron decay vertices were used together to obtain an event sample enriched in Z0 → bb̅ decays. The efficiency of the bb̅ event tagging was obtained from the data by comparing the numbers of events having a bottom signature in either one or both thrust hemispheres. Efficiency correlations between opposite event hemispheres are small (< 0.5%) and well understood through comparisons between the real and simulated data samples. A value of Rb= 0.2175 ± 0.0014 ± 0.0017 was obtained, where the first error is statistical and the second systematic. The uncertainty on the decay width Γ(Z0 → cc̅) is not included in these errors. The result depends on Rc as follows: $${⩼ Delta R_{⤪ b}⩈er R_{⤪ b}}=-0.084{⩼ Delta R_{⤪ c}⩈er R_{⤪ c}},$$ where ΔRc is the deviation of Rc from the value 0.172 predicted by the Standard Model.

1 data table

No description provided.


A precise measurement of the tau polarization and its forward-backward asymmetry at LEP.

The OPAL collaboration Alexander, G. ; Allison, John ; Altekamp, N. ; et al.
Z.Phys.C 72 (1996) 365-375, 1996.
Inspire Record 421815 DOI 10.17182/hepdata.47776

A measurement of theτ lepton polarization and its forward-backward asymmetry at the Z0 resonance using the OPAL detector is described. The measurement is based on analyses of τ→ρντ, ττπ(K)ντ,\(\tau\to e\bar \nu _e \nu _\tau\),\(\tau\to \mu \bar \nu _\mu\nu _\tau\) andτ→a1ντ decays from a sample of 89075 e+e−→τ+τ− candidates corresponding to an integrated luminosity of 117 pb−1. Assuming that theτ lepton decays according to V-A theory, we measure the averageτ polarization at √s=MZ to be 〈P〉=(−13.0±0.9±0.9)% and theτ polarization forward-backward asymmetry to be ApolFB=(−9.4±1.0±0.4)%, where the first error is statistical and the second systematic. These results are consistent with the hypothesis of lepton universality and, when combined, can be expressed as a measurement of sin2θefflept=0.2334±0.0012 within the context of the Standard Model.

1 data table

No description provided.


Test of QCD analytic predictions for the multiplicity ratio between gluon and quark jets.

The OPAL collaboration Alexander, G. ; Allison, John ; Altekamp, N. ; et al.
Phys.Lett.B 388 (1996) 659-672, 1996.
Inspire Record 423486 DOI 10.17182/hepdata.47714

Gluon jets with about 39 GeV energy are identified in hadronic Z 0 decays by tagging two jets in the same hemisphere of an event as quark jets. Identifying the gluon jet to be all the particles observed in the hemisphere opposite to that containing the two tagged jets yields an inclusive gluon jet definition corresponding to that used in analytic calculations, allowing the first direct test of those calculations. In particular, this jet definition yields results which are only weakly dependent on a jet finding algorithm. We find r ch. =1.552±0.0041 ( stat ) ±0.061 ( syst. ) for the ratio of the mean charged particle multiplicity in gluon jets to that in light quark uds jets, where the uds jets are identified using an inclusive jet definition similar to that used for the gluon jets. Our result is in general agreement with the prediction of a recent analytic calculation which incorporates energy conservation into the parton shower branching processes, but is considerably smaller than analytic predictions which do not incorporate energy conservation.

2 data tables

Mean charged particle multiplicity in gluon jets.

Mean charged particle multiplicity in single hemisphere light quark jets.


Measurement of the QED longitudinal structure function of the photon using azimuthal correlations at LEP.

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 74 (1997) 49-55, 1997.
Inspire Record 426207 DOI 10.17182/hepdata.47704

We have studied azimuthal correlations in singly-tagged e+e− → e+e−μ+μ− events at an average Q2 of 5.2 GeV2. The data were taken with the OPAL detector at LEP at e+e− centre-of-mass energies close to the Z0 mass, with an integrated luminosity of approximately 100 pb−1. The azimuthal correlations are used to extract the ratio $F_{B}^{αmma}/F_{2}^{αmma}$ of the QED structure functions $F_{B}^{αmma}(x,Q^{2})$ and $F_{2}^{αmma}(x,Q^{2})$ of the photon. In leading order and neglecting the muon mass $F_{B}^{αmma}$ is expected to be identical to the longitudinal structure function $F_{L}^{αmma}$. The measurement of $F_{B}^{αmma}/F_{2}^{αmma}$ is found to be significantly different from zero and to be consistent with the QED prediction.

1 data table

No description provided.


A measurement of the charm and bottom forward-backward asymmetries using D mesons at LEP.

The OPAL collaboration Alexander, G. ; Allison, John ; Altekamp, N. ; et al.
Z.Phys.C 73 (1997) 379-395, 1997.
Inspire Record 421995 DOI 10.17182/hepdata.47946

A measurement of the charm and bottom forward-backward asymmetry in e+e− annihilations is presented at energies on and around the peak of the Z0 resonance. Decays of the Z0 into charm and bottom quarks are tagged using D mesons identified in about 4 million hadronic decays of the Z0 boson recorded with the OPAL detector at LEP between 1990 and 1995. Approximately 33000 D mesons are tagged in seven different decay modes. From these the charm and bottom asymmetries are measured in three energy ranges around the Z0 peak: \(\matrix {A_{\rm FB}^{\rm c}=0.039\pm 0.051\pm 0.009\cr A_{\rm FB}^{\rm c}=0.063\pm 0.012\pm 0.006\cr A_{\rm FB}^{\rm c}=0.158\pm 0.041\pm 0.011}\)\(\matrix {A_{\rm FB}^{\rm b}=0.086\pm 0.108\pm 0.029\cr A_{\rm FB}^{\rm b}=0.094\pm 0.027\pm 0.022\cr A_{\rm FB}^{\rm b}=0.021\pm 0.090\pm 0.026}\)\(\matrix{\langle E_{cm}\rangle =89.45\ {\rm GeV}\cr \langle E_{cm}\rangle =91.22\ {\rm GeV}\cr \langle E_{cm}\rangle =93.00\ {\rm GeV}}\) The results are in agreement with the predictions of the standard model and other measurements at LEP.

2 data tables

Forward-backward asymmetry.

No description provided.


Measurement of the longitudinal, transverse and asymmetry fragmentation functions at LEP

The OPAL collaboration Akers, R. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 68 (1995) 203-214, 1995.
Inspire Record 395450 DOI 10.17182/hepdata.48040

The fragmentation function for the process e+e−→h+X, whereh represents a hadron, may be decomposed into transverse, longitudinal and asymmetric contributions by analysis of the distribution of polar production angles. A number of new tests of QCD have been proposed using these fragmentation functions, but so far no data have been published on the separate components. We have performed such a separation using data on charged particles from hadronic Z0 decays atOpal, and have compared the results with the predictions of QCD. By integrating the fragmentation functions, we determine the average charged particle multiplicity to be\(\overline {n_{ch} }= 21.05 \pm 0.20\). The longitudinal to total cross-section ratio is determined to be σL/σtot=0.057±0.005. From the longitudinal fragmentation function we are able to extract the gluon fragmentation function. The connection between the asymmetry fragmentation function and electroweak asymmetrics is discussed.

4 data tables

Transverse component of the fragmentation function.

Longitudinal component of the fragmentation function.

Asymmetry component of the fragmentation function.

More…

Sigma+, Sigma0 and Sigma- hyperon production in hadronic Z0 decays.

The OPAL collaboration Alexander, G. ; Allison, John ; Altekamp, N. ; et al.
Z.Phys.C 73 (1997) 587-600, 1997.
Inspire Record 421977 DOI 10.17182/hepdata.47948

The production rates of the $J_{P}={1⩈er 2}^{+}$ octet Σ baryons in hadronic Z0 decays have been measured using the OPAL detector at LEP. The inclusive production rates per hadronic Z0 decay of the three isospin states (including the respective antiparticle) have been separately measured for the first time: $άtrix {n_{Sigma^{+}}=0.099pm 0.008pm 0.013ŗ n_{Sigma^{0}}=0.071pm 0.012pm 0.013ŗ n_{Sigma^{-}}=0.083pm 0.006pm 0.009ŗ}$ where the first error is statistical and the second is systematic. Differential cross-sections are also presented for the Σ+ and Σ− and compared with JETSET and HERWIG predictions. Assuming full isospin symmetry, the average inclusive rate is: ${1⩈er 3}[n_{Sigma^{+}+Sigma^{0}+Sigma^{-}}]=0.084pm 0.005 ({⤪ stat.}) pm 0.008 ({⤪ syst.})$.

5 data tables

Differential cross section for SIGMA+ production.

Differential cross section for SIGMA- production.

No description provided.

More…

The Production of neutral kaons in Z0 decays and their Bose-Einstein correlations

The OPAL collaboration Akers, R. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 67 (1995) 389-402, 1995.
Inspire Record 393503 DOI 10.17182/hepdata.48008

The production of neutral kaons in e+e− annihilation at centre-of-mass energies in the region of the Z0 mass and their Bose-Einstein correlations are investigated with the OPAL detector at LEP. A total of about 1.26×106 Z0 hadronic decay events are used in the analysis. The production rate of K0 mesons is found to be 1.99±0.01±0.04 per hadronic event, where the first error is statistical and the second systematic. Both the rate and the differential cross section for K0 production are compared to the predictions of Monte Carlo generators. This comparison indicates that the fragmentation is too soft in bothJetset andHerwig. Bose-Einstein correlations in Ks0Ks0 pairs are measured through the quantityQ, the four momentum difference of the pair. A threshold enhancement is observed in Ks0Ks0 pairs originating from a mixed sample of\(K^0 \bar K^0\) and K0K0 (\(\bar K^0 \bar K^0\)) pairs. For the strength of the effect and for the radius of the emitting source we find values of λ=1.14±0.23±0.32 andR0=(0.76±0.10±0.11) fm respectively. The first error is statistical and the second systematic.

3 data tables

No description provided.

The mean x is computed using the method of Lafferty and Wyatt NIM A355(1995)541.

The mean x is computed using the method of Lafferty and Wyatt NIM A355(1995)541.