Update of the ALEPH non-strange spectral functions from hadronic $\tau$ decays

Davier, Michel ; Höcker, Andreas ; Malaescu, Bogdan ; et al.
Eur.Phys.J.C 74 (2014) 2803, 2014.
Inspire Record 1267648 DOI 10.17182/hepdata.77010

An update of the ALEPH non-strange spectral functions from hadronic $\tau$ decays is presented. Compared to the 2005 ALEPH publication, the main improvement is related to the use of a new method to unfold the measured mass spectra from detector effects. This procedure also corrects a previous problem in the correlations between the unfolded mass bins. Results from QCD studies and for the evaluation of the hadronic vacuum polarisation contribution to the anomalous muon magnetic moment are derived using the new spectral functions. They are found in agreement with published results based on the previous set of spectral functions.

23 data tables

Differential mass squared cross section for the $\pi\pi^0$ channel presented here as the cross section multipled by the bin width. The data are normalised to a branching ratio of 25.471%

Differential mass squared cross section for the $\pi 2\pi^0$ channel presented here as the cross section multipled by the bin width. The data are normalised to a branching ratio of 9.239%

Differential mass squared cross section for the $\pi 3\pi^0$ channel presented here as the cross section multipled by the bin width. The data are normalised to a branching ratio of 0.977%

More…

Measurement of observables sensitive to coherence effects in hadronic Z decays with the OPAL detector at LEP

The OPAL collaboration Fischer, Nadine ; Gieseke, Stefan ; Kluth, Stefan ; et al.
Eur.Phys.J.C 75 (2015) 571, 2015.
Inspire Record 1367303 DOI 10.17182/hepdata.73695

A study of QCD coherence is presented based on a sample of about 397000 $e^+e^-$ hadronic annihilation events collected at $\sqrt{s}=91$ GeV with the OPAL detector at LEP. The study is based on four recently proposed observables that are sensitive to coherence effects in the perturbative regime. The measurement of these observables is presented, along with a comparison with the predictions of different parton shower models. The models include both conventional parton shower models and dipole antenna models. Different ordering variables are used to investigate their influence on the predictions.

14 data tables

The normalized corrected data at the hadron level for the emission angle $\theta_{14}$.

The correlation matrix of the normalized corrected data at the hadron level for the emission angle $\theta_{14}$.

The normalized corrected data at the hadron level for the mass ratio $\rho=M_L^2/M_H^2$.

More…