Tests of Quantum Chromodynamics and a Direct Measurement of the Strong Coupling Constant $\alpha_S$ at $\sqrt{s}=30$-{GeV}

Barber, D.P. ; Becker, U. ; Benda, H. ; et al.
Phys.Lett.B 89 (1979) 139-144, 1979.
Inspire Record 143680 DOI 10.17182/hepdata.6483

We report the measurement of the reaction e + + e − → hadronic jets at a center-of-mass energy √ s =30 GeV using the MARK-J detector at PETRA. By measuring the energy and angular distribution of both neutrals and charged particles we were able to isolate unambiguously the three-jet events in a kinematic region where the backgrounds from q q and phase space contributions and other processes are small. Various comparisons of the data with quantum chromodynamics were made. The relative yield of three-jet events and the shape distribution of the events enable us to determine α s = 0.23 ± 0.02 (statistical error) with a systematic error of ± 0.04.

2 data tables

OBLATENESS AND THRUST DISTRIBUTIONS FOR NARROW AND BROAD JETS AT 30 GEV. THESE DATA ARE SOMEWHAT ANALYSIS AND DETECTOR DEPENDENT.

No description provided.


Observation of Planar Three Jet Events in e+ e- Annihilation and Evidence for Gluon Bremsstrahlung

The JADE collaboration Bartel, W. ; Canzler, T. ; Cords, D. ; et al.
Phys.Lett.B 91 (1980) 142-147, 1980.
Inspire Record 143985 DOI 10.17182/hepdata.6339

Topological distributions of charged and neutral hadrons from the reaction e + e − → multihadrons are studied at √ s of about 30 GeV. An excess of planar events is observed at a rate which cannot be explained by statistical fluctuations in the standard two-jet process. The planar events, mostly consisting of a slim jet on one side and a broader jet on the other, are shown actually to possess three-jet structure by demonstrating that the broader jet itself consists of two collinear jets in its own rest system. Detailed agreement between data and predictions is obtained if the process e + e − →q q ̄ g is taken into account. This strongly suggests gluon bremsstrahlung as the origin of the planar three-jet events. By comparison of the data with the qq̄g-model we obtain a value for the strong coupling constant of α S ( q 2 = 0.17 ± 0.04.

2 data tables

THRUST AND PLANARITY DISTRIBUTIONS. FINAL (BETTER) THRUST DISTRIBUTIONS WITH DETECTOR CORRECTIONS TO BE PUBLISHED LATER.

No description provided.


Comparison of e+ e- Annihilation with QCD and Determination of the Strong Coupling Constant

The TASSO collaboration Brandelik, R. ; Braunschweig, W. ; Gather, K. ; et al.
Phys.Lett.B 94 (1980) 437-443, 1980.
Inspire Record 153511 DOI 10.17182/hepdata.5489

We have analyzed 1113 events of the reaction e + e − → hadrons at CM energies of 12 and 30 GeV in order to make a detailed comparison with QCD. Perturbative effects can be well separated from effects depending on the quark and gluon fragmentation parameters to yield a reliable measurement of the coupling constant α S . At 30 GeV, the result is α S = 0.17 ± 0.02 (statistical) ± 0.03 (systematic). QCD model predictions, using the fragmentation parameters determined along with α S , agree with both gross properties of the final states and with detailed features of the three-jet states.

7 data tables

No description provided.

No description provided.

No description provided.

More…

A Study of Multi-Jet Events in e+ e- Annihilation

The PLUTO collaboration Berger, Christoph ; Genzel, H. ; Grigull, R. ; et al.
Phys.Lett.B 97 (1980) 459-464, 1980.
Inspire Record 155318 DOI 10.17182/hepdata.27141

A multi-jet analysis of hadronic final states from e + e − annihilation in the energy range 27 < E cm < 32GeV is presented. The analysis uses a cluster method to identify the jets in a hadronic event. The distribution of the number of jets per event is compared with several models. From the number of identified coplanar three-jet events the strong coupling constant is determined to beα S = 0.15 ± 0.03 (stat. error) ± 0.02 (syst. error). The inferred energy distribution of the most energetic parton is in good agreement with the first-order QCD prediction. A scalar-gluon model is strongly disfavoured. Higher-twist contributions to the three-jet sample are found to be small.

1 data table

No description provided.


Energy-energy Correlations in $e^+ e^-$ Annihilation Into Hadrons

The PLUTO collaboration Berger, Christoph ; Genzel, H. ; Grigull, R. ; et al.
Phys.Lett.B 99 (1981) 292, 1981.
Inspire Record 156315 DOI 10.17182/hepdata.6228

Measurements of energy-energy correlations in hadronic final states produced in e + e − annihilation at c.m. energies between 7.7 and 31.6 GeV are presented. The data are compared to perturbative QCD predictions. Good qualitative agreement above 20 GeV c.m. energy is found. The importance of non-perturbative effects is discussed, as well as the detailed behaviour of the correlation near 180°.

6 data tables

No description provided.

OPPOSITE SIDE ENERGY-ENERGY CORRELATIONS NEAR 180 DEG.

ENERGY-ENERGY CORRELATION INTEGRATED IN THE REGION 60 TO 120 DEG.

More…

Topology of Hadronic $e^+ e^-$ Annihilation Events at 22-{GeV} and 34-{GeV} Center-of-mass Energy

The CELLO collaboration Behrend, H.J. ; Chen, C. ; Field, J.H. ; et al.
Phys.Lett.B 110 (1982) 329-334, 1982.
Inspire Record 169195 DOI 10.17182/hepdata.30996

The topology of hadronic e + e − annihilation events has been analysed using the sphericity tensor and a cluster method. Comparison with quark models including gluon bremsstrahlung yields good agreement with the data. The strong-coupling constant is determined in 1st order QCD to be α S =0.19±0.04 (stat) ± 0.04 (syst.) at 22 GeV and α S =0.16 ±0.02± 0.03 at 34 GeV. The differential cross section with respect to the energy fraction carried by the most energetic parton agrees with the prediction of QCD, but cannot be reproduced by a scalar gluon model. These results are stable against variations of the transverse momentum distribution of the fragmentation function within the quoted errors.

1 data table

No description provided.


A Measurement of Sigma(tot) (e+ e- ---> Hadrons) for CM Energies Between 12.0-GeV and 36.7-GeV

The TASSO collaboration Brandelik, R. ; Braunschweig, W. ; Gather, K. ; et al.
Phys.Lett.B 113 (1982) 499-508, 1982.
Inspire Record 176887 DOI 10.17182/hepdata.6666

The ration R = σ (e + e − → hadrons) σ μμ was measured between 12.0 and 36.7 GeV c.m. energy W with a precision of typically ± 5.2%. R is found to be constant with an average R = 4.01 ± 0.03 (stat) ± (syst.) for W ⩾ 14 GeV. Quarks are found to be point-like, the mass parameter describing a possible quark form-factor being larger than 186 GeV. Fits including QCD corrections and a weak neutral-current contribution are presented.

4 data tables

DATA OF RUNPERIOD 1.

DATA OF RUNPERIOD 2.

R MEASURED IN SCANNING MODE.

More…

An Analysis of the Charged and Neutral Energy Flow in $e^+ e^-$ Hadronic Annihilation at 34-{GeV}, and a Determination of the {QCD} Effective Coupling Constant

The CELLO collaboration Behrend, H.J. ; Chen, C. ; Fenner, H. ; et al.
Phys.Lett.B 113 (1982) 427-432, 1982.
Inspire Record 177228 DOI 10.17182/hepdata.30921

Using both charged and neutral components, 2600 multihadronic e + e − annihilation events, recorded at 34 GeV by the CELLO detector at PETRA, have been analysed in a calometric approach. The fraction of energy carried by gamma rays is measured to be f γ = (26.0 ± 0.4 (stat) ± 4.0 (syst)%. The neutral energy flow is seen to follow closely the overall energy flow. From the corrected oblateness distribution, a first order determination of α s is performed. The result is α s = 0.16 ± 0.01 (stat) ± 0.03 (syst).

1 data table

No description provided.


The Influence of Fragmentation Models on the Determination of the Strong Coupling Constant in $e^+ e^-$ Annihilation Into Hadrons

The CELLO collaboration Behrend, H.J. ; Chen, C. ; Fenner, H. ; et al.
Nucl.Phys.B 218 (1983) 269-288, 1983.
Inspire Record 179447 DOI 10.17182/hepdata.8172

Hadronic events obtained with the CELLO detector at PETRA were compared with first-order QCD predictions using two different models for the fragmentation of quarks and gluons, the Hoyer model and the Lund model. Both models are in reasonable agreement with the data, although they do not completely reproduce the details of many distributions. Several methods have been applied to determine the strong coupling constant α S . Although within one model the value of α S varies by 20% among the different methods, the values determined using the Lund model are 30% or more larger (depending on the method used) than the values determined with the Hoyer model. Our results using the Hoyer model are in agreement with previous results based on this approach.

3 data tables

DATA CORRECTED WITH HOYER MODEL (ALPHA-S=0.15).

DATA CORRECTED WITH LUND MODEL (ALPHA-S=0.25).

No description provided.


Differential Three Jet Cross-section in $e^+ e^-$ Annihilation and Comparison With Second Order Predictions of {QCD} and Abelian Vector Theory

The JADE collaboration Bartel, W. ; Cords, D. ; Dietrich, G. ; et al.
Phys.Lett.B 119 (1982) 239-244, 1982.
Inspire Record 180033 DOI 10.17182/hepdata.30830

Differential three-jet cross sections have been measured in e + e − -annihilation at an average CM energy of 33.8 GeV and were compared to first- and second-order predictions of QCD and of a QED-like abelian vector theory. QCD provides a good description of the observed distributions. The inclusion of second-order effects reduced the observed quark-gluon coupling strength by about 20% to α S = 0.16 ± 0.015 (stat.) ± 0.03 (syst.). The abelian vector theory is found to be incompatible with the data.

2 data tables

FIRST ORDER QCD.

SECOND ORDER QCD.


A Model Independent Second Order Determination of the Strong Coupling Constant $\alpha^- s$

Adeva, B. ; Barber, D.P. ; Becker, U. ; et al.
Phys.Rev.Lett. 50 (1983) 2051, 1983.
Inspire Record 189724 DOI 10.17182/hepdata.3086

With use of the MARK-J detector at s=34.7 GeV 21 000 e+e−→hadron events have been collected. By measurement of the asymmetry in angular energy correlations the strong coupling constant αs=0.13±0.01 (statistical)±0.02 (systematic) is determined, in complete second order, and independent of the fragmentation models and QCD cutoff values used.

2 data tables

DATA REQUESTED FROM THE AUTHORS.

No description provided.


Precise Measurement of Total Cross-Sections for the Process e+ e- ---> Multi-Hadrons in the Center-Of-Mass Energy Range Between 12.0-GeV and 36.4-GeV

The JADE collaboration Bartel, W. ; Becker, L. ; Bowdery, C. ; et al.
Phys.Lett.B 129 (1983) 145-152, 1983.
Inspire Record 191159 DOI 10.17182/hepdata.6639

The total cross section for the process e + e − → hadrons has been measured in the CM energy range between 12.0 and 36.4 GeV using the JADE detector with a typical systematic error of ±3%. The ratio R( σ( ee → hadrons ) σ pt ) is found to be constant over this range with an average value of 3.97 ± 0.05 (statistical and point-to-point systematic error) ± 0.10 (normalization error). The data were compared with the standard electro-weak interaction model including QCD corrections.

2 data tables

ERRORS ARE STATISTICAL PLUS POINT TO POINT SYSTEMATICS. THERE IS AN ADDITIONAL 2.4 PCT OVERALL NORMALIZATION ERROR.

No description provided.


On the Model Dependence of the Determination of the Strong Coupling Constant in Second Order {QCD} From $e^+ e^-$ Annihilation Into Hadrons

The CELLO collaboration Behrend, H.J. ; Fenner, H. ; Schachter, M.J. ; et al.
Phys.Lett.B 138 (1984) 311-316, 1984.
Inspire Record 195332 DOI 10.17182/hepdata.6634

Hadronic events obtained with the CELLO detector at PETRA are compared with second order QCD predictions using different models for the fragmentation of quarks and gluons into hadrons. We find that the model dependence in the determination of the strong coupling constant persists when going from first to second order QCD calculations.

3 data tables

ASYMMETRY FOR DATA CORRECTED WITH IF MODEL (ALPHA-S=0.12).

ASSYMETRY FOR DATA CORRECTED WITH SF MODEL (ALPHA-S=0.19).

No description provided.


Experimental Test of the Flavor Independence of the Quark - Gluon Coupling Constant

The TASSO collaboration Althoff, M. ; Braunschweig, W. ; Kirschfink, F.J. ; et al.
Phys.Lett.B 138 (1984) 317-324, 1984.
Inspire Record 199470 DOI 10.17182/hepdata.6609

Reconstruction of charged D ∗ 's produced inclusively in e + e −. annihilation at CM energies near 34.4 GeV is accomplished in the decay modes D ∗ + → D 0 π + → K − gp + π 0 π + and D ∗ + → D 0 π + → K − gp + π − π + π + and their charge conjugates. Using these and previously reported D ∗ + → D 0 π + → K − gp + π + and D ∗ + → D 0 π + → K − gp + π + + missing π 0 channels we present evidence for hard gluon bremsstrahlung from charm quarks and show that the ratio of the quark-gluon coupling constant of charm quarks to the coupling constant obtained in the average hadronic event, α s c α rms = 100 ± 0.20 ± 1.20 . Our result provides evidence that the quark-gluon coupling constant is independent of flavor.

3 data tables

No description provided.

No description provided.

No description provided.


Measurements of Energy Correlations in $e^+ e^- \to$ Hadrons

The JADE collaboration Bartel, W. ; Becker, L. ; Bowdery, C. ; et al.
Z.Phys.C 25 (1984) 231, 1984.
Inspire Record 202784 DOI 10.17182/hepdata.1998

Energy-energy-correlations (EEC) have been measured with the JADE detector at c.m. energies of 14 GeV, 22 GeV and in the region 29 GeV<Ecm<36 GeV. Corrected results are presented of EEC and their asymmetry, which can be directly compared to theoretical predictions. At 〈Ecm〉=34 GeV a comparison with second order QCD predictions yields good agreement for the string model fragmentation resulting in a value of the strong coupling constant αs=0.165±0.01 (stat.). The independent fragmentation models, which yield values of αs between 0.10 and 0.15 depending on the treatment of energy and momentum conservation and of the gluon splitting, do not provide a satisfactory description of the data over the full angular range.

3 data tables

TABLES GIVEN HERE CONTAIN SELF CORRELATION. THIS IS SUBTRACTED IN THE FIGURE.

VALUE OF ASSYMETRY IN CORRELATIONS.

No description provided.


Precision Measurement of the Total Cross-section for $e^+ e^- \to$ Hadrons at a Center-of-mass Energy of 29-{GeV}

Fernandez, E. ; Ford, William T. ; Qi, N. ; et al.
Phys.Rev.D 31 (1985) 1537, 1985.
Inspire Record 206052 DOI 10.17182/hepdata.4048

We report a high-precision measurement of the ratio R of the total cross section for e+e−→hadrons to that for e+e−→μ+μ−, at a center-of-mass energy of 29.0 GeV using the MAC detector. The result is R=3.96±0.09. This value of R is used to determine a value of the strong coupling constant αs of 0.23±0.06, nearly independent of fragmentation models. Two different analysis methods having quite different event-selection criteria have been used and the results are in agreement. Particular attention has been given to the study of systematic errors. New higher-order QED calculations are used for the luminosity determination and the acceptance for hadrons.

2 data tables

No description provided.

No description provided.


A Measurement of Strong Coupling Constant $\alpha_s$ to Second Order for 14-{GeV} $\le \sqrt{s} \le$ 46.78-{GeV}

The MARK-J collaboration Adeva, B. ; Becker, U. ; Becker-Szendy, R. ; et al.
Phys.Rev.Lett. 54 (1985) 1750, 1985.
Inspire Record 208007 DOI 10.17182/hepdata.20386

Using the Mark-J detector at the high-energy e+e− collider PETRA, we compare the data from hadron production with the complete second-order QCD calculation over the energy region 22 to 46.78 GeV. We determine the QCD parameter Λ=100±30−45+60 MeV which yields the strong-coupling constant αs=0.12±0.02 for s=44 GeV.

2 data tables

No description provided.

Axis error includes +- 0.0/0.0 contribution (DUE TO FRAGMENTATION MODEL).


A Measurement of the Strong Coupling Constant $\alpha^- s$ to Complete Second Order

The Mark-J collaboration Adeva, B. ; Anderhub, H. ; Ansari, S. ; et al.
Phys.Lett.B 180 (1986) 181-184, 1986.
Inspire Record 231302 DOI 10.17182/hepdata.6535

The strong interaction coupling constant α s has been measured with a new method, the planar triple energy correlation in the reaction e + e - → hadrons at center-of-mass energies ranging from 14 GeV to 46.78 GeV. A complete second-order perturbative QCD calculation was used. Λ MS = 110 ± 30 −55 +70 MeV is found.

3 data tables

No description provided.

No description provided.

No description provided.


Determination of alpha-s and sin**2theta(w) from Measurements of the Total Hadronic Cross-Section in e+ e- Annihilation

The CELLO collaboration Behrend, H.J. ; Burger, J. ; Criegee, L. ; et al.
Phys.Lett.B 183 (1987) 400-411, 1987.
Inspire Record 236981 DOI 10.17182/hepdata.30231

We have measured the total normalized cross section R for the process e + e − → hadrons at centre-of-mass energies between 14.0 and 46.8 GeV based on an integrated luminosity of 60.3 pb −1 . The data are well described by the standard SU(3) c ⊗SU(2) L ⊗U(1) model with the production of the five known quarks. No open production of a sixth quark with charge 2/3 or 1/3 occurs below a centre-of-mass energy of 46.6 or 46.3 GeV, respectively. A fitting procedure which takes the correlations between measurements into account was used to determine the electroweak mixing angle sin 2 θ w and the strong coupling constant α s ( S ) in second-order QCD. We applied this procedure to the CELLO data and in addition included the data from other experiments at PETRA and PEP. Both fits give consistent results. The fit to the combined data yields α s (34 2 GeV 2 ) = 0.165±0.030, and sin 2 θ w = 0.236±0.020. Fixing sin 2 θ w at the world average value of 0.23 yields α s (34 2 GeV 2 ) = 0.169±0.025.

2 data tables

No description provided.

No description provided.


A Study of Energy-energy Correlations Between 12-{GeV} and 46.8-{GeV} {CM} Energies

The TASSO collaboration Braunschweig, W. ; Gerhards, R. ; Kirschfink, F.J. ; et al.
Z.Phys.C 36 (1987) 349-361, 1987.
Inspire Record 248660 DOI 10.17182/hepdata.1698

We present data on energy-energy correlations (EEC) and their related asymmetry (AEEC) ine+e− annihilation in the centre of mass energy range 12<W≦46.8 GeV. The energy and angular dependence of the EEC in the central region is well described byOαs2 QCD plus a fragmentation term proportional to\({1 \mathord{\left/ {\vphantom {1 {\sqrt s }}} \right. \kern-\nulldelimiterspace} {\sqrt s }}\). BareO(α)s2 QCD reproduces our data for the large angle region of the AEEC. Nonperturbative effects for the latter are estimated with the help of fragmentation models. From various analyses using different approximations, we find that values for\(\Lambda _{\overline {MS} } \) in the range 0.1–0.3 GeV give a good description of the data. We also compare analytical calculations in QCD for the EEC in the back-to-back region to our data. The theoretical predictions describe well both the angular and energy dependence of the data in the back-to-back region.

10 data tables

Correlation function binned in cos(chi).

Correlation function binned in cos(chi).

Correlation function binned in cos(chi).

More…

Determination of $\alpha^- s$ From a Differential Jet Multiplicity Distribution at {SLC} and {PEP}

Komamiya, Sachio ; Le Diberder, F. ; Abrams, G.S. ; et al.
Phys.Rev.Lett. 64 (1990) 987, 1990.
Inspire Record 283630 DOI 10.17182/hepdata.19937

We measured the differential jet-multiplicity distribution in e+e− annihilation with the Mark II detector. This distribution is compared with the second-order QCD prediction and αs is determined to be 0.123±0.009±0.005 at √s≊MZ (at the SLAC Linear Collider) and 0.149±0.002±0.007 at √s=29 GeV (at the SLAC storage ring PEP). The running of αs between these two center-of-mass energies is consistent with the QCD prediction.

2 data tables

DIFFERENTIAL JET MULTIPLICITIES.

DIFFERENTIAL JET MULTIPLICITIES.


A Comparison of jet production rates on the Z0 resonance to perturbative QCD

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Phys.Lett.B 247 (1990) 167-176, 1990.
Inspire Record 297698 DOI 10.17182/hepdata.29653

The production rates for 2-, 3-, 4- and 5-jet hadronic final states have been measured with the DELPHI detector at the e + e − storage ring LEP at centre of mass energies around 91.5 GeV. Fully corrected data are compared to O(α 2 s ) QCD matrix element calculations and the QCD scale parameter Λ MS is determined for different parametrizations of the renormalization scale ω 2 . Including all uncertainties our result is α s ( M 2 Z )=0.114±0.003[stat.]±0.004[syst.]±0.012[theor.].

2 data tables

Corrected jet rates.

Second systematic error is theoretical.


Determination of alpha-s from jet multiplicities measured on the Z0 resonance

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 248 (1990) 464-472, 1990.
Inspire Record 298078 DOI 10.17182/hepdata.29651

We present a study of jet multiplicities based on 37 000 hadronic Z 0 boson decays. From this data we determine the strong coupling constant α s =0.115±0.005 ( exp .) −0.010 +0.012 (theor.) to second order QCD at √ s =91.22GeV.

2 data tables

Errors are combined statistical and systematic uncertainties.

No description provided.


Measurement of electroweak parameters from Z decays into Fermion pairs

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Z.Phys.C 48 (1990) 365-392, 1990.
Inspire Record 298414 DOI 10.17182/hepdata.47314

We report on the properties of theZ resonance from 62 500Z decays into fermion pairs collected with the ALEPH detector at LEP, the Large Electron-Positron storage ring at CERN. We findMZ=(91.193±0.016exp±0.030LEP) GeV, ΓZ=(2497±31) MeV, σhad0=(41.86±0.66)nb, and for the partial widths Γinv=(489±24) MeV, Γhad(1754±27) MeV, Γee=(85.0±1.6)MeV, Γμμ=(80.0±2.5) MeV, and Γττ=(81.3±2.5) MeV, all in good agreement with the Standard Model. Assuming lepton universality and using a lepton sample without distinction of the final state we measure Γu=(84.3±1.3) MeV. The forward-backward asymmetry in leptonic decays is used to determine the vector and axial-vector weak coupling constants of leptors,gv2(MZ2)=(0.12±0.12)×10−2 andgA2(MZ2)=0.2528±0.0040. The number of light neutrino species isNν=2.91±0.13; the electroweak mixing angle is sin2θW(MZ2)=0.2291±0.0040.

8 data tables

Hadronic cross section from the charged track selection trigger.

Hadronic cross section from the calorimeter selection trigger.

Averaged hadronic cross section.

More…

Energy-energy correlations in hadronic final states from Z0 decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Phys.Lett.B 252 (1990) 149-158, 1990.
Inspire Record 300161 DOI 10.17182/hepdata.29534

We have studied the energy-energy angular correlations in hadronic final states from Z 0 decay using the DELPHI detector at LEP. From a comparison with Monte Carlo calculations based on the exact second order QCD matrix element and string fragmentation we find that Λ (5) MS =104 +25 -20 ( stat. ) +25 -20( syst. ) +30 00 ) theor. ) . MeV, which corresponds to α s (91 GeV)=0.106±0.003(stat.)±0.003(syst.) +0.003 -0.000 (theor). The theoretical error stems from different choices for the renormalization scale of α s . In the Monte Carlo simulation the scale of α s as well as the fragmentation parameters have been optimized to described reasonably well all aspects of multihadron production.

2 data tables

Data requested from the authors.

Values of LAMBDA-MSBAR(5) and ALPHA-S(91 GeV) deduced from the EEC measurements. The second systematic error is from the theory.


A Measurement of energy correlations and a determination of alpha-s (M2 (Z0)) in e+ e- annihilations at s**(1/2) = 91-GeV

The OPAL collaboration Akrawy, M.Z. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 252 (1990) 159-169, 1990.
Inspire Record 298707 DOI 10.17182/hepdata.29525

From an analysis of multi-hadron events from Z 0 decays, values of the strong coupling constant α s ( M 2 Z 0 )=0.131±0.006 (exp)±0.002(theor.) and α s ( M z 0 2 ) = −0.009 +0.007 (exp.) −0.002 +0.006 (theor.) are derived from the energy-energy correlation distribution and its asymmetry, respectively, assuming the QCD renormalization scale μ = M Z 0 . The theoretical error accounts for differences between O ( α 2 s ) calculations. A two parameter fit Λ MS and the renormalization scale μ leads to Λ MS =216±85 MeV and μ 2 s =0.027±0.013 or to α s ( M 2 Z 0 )=0.117 +0.006 −0.008 (exp.) for the energy-energy correlation distribution. The energy-energy correlation asymmetry distribution is insensitive to a scale change: thus the α s value quoted above for this variable includes the theoretical uncertainty associated with the renormalization scale.

3 data tables

Data are at the hadron level, unfolded for initial-state radiation and for detector acceptance and resolution. Note that the systematic errors between bins are correlated.

Alpha-s determined from the EEC measurements. The systematic error is an error in the theory.

Alpha-s determined from the AEEC measurements. The systematic error is an error in the theory.


A Study of the recombination scheme dependence of jet production rates and of alpha-s (m(Z0)) in hadronic Z0 decays

The OPAL collaboration Akrawy, M.Z. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 49 (1991) 375-384, 1991.
Inspire Record 299833 DOI 10.17182/hepdata.15085

The error includes the experimental uncertainties (±0.003), uncertainties of hadronisation corrections and of the degree of parton virtualities to which the data are corrected, as well as the uncertainty of choosing the renormalisation scale.

9 data tables

Jet production rates using the E0 recombination scheme.

Jet production rates using the E recombination scheme.

Jet production rates using the p0 recombination scheme.

More…

Measurement of the strong coupling constant alpha-s from global event shape variables of hadronic Z decays

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Phys.Lett.B 255 (1991) 623-633, 1991.
Inspire Record 301661 DOI 10.17182/hepdata.29491

An analysis of global event-shape variables has been carried out for the reaction e + e − →Z 0 →hadrons to measure the strong coupling constant α s . This study is based on 52 720 hadronic events obtained in 1989/90 with the ALEPH detector at the LEP collider at energies near the peak of the Z-resonance. In order to determine α s , second order QCD predictions modified by effects of perturbative higher orders and hadronization were fitted to the experimental distributions of event-shape variables. From a detailed analysis of the theoretical uncertainties we find that this approach is best justified for the differential two-jet rate, from which we obtain α s ( M Z 2 ) = 0.121 ± 0.002(stat.)±0.003(sys.)±0.007(theor.) using a renormalization scale ω = 1 2 M Z . The dependence of α s ( M Z 2 ) on ω is parameterized. For scales m b <ω< M Z the result varies by −0.012 +0.007 .

1 data table

The second DSYS error is the theoretical error.


Measurement of alpha-s from the structure of particle clusters produced in hadronic Z decays

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Phys.Lett.B 257 (1991) 479-491, 1991.
Inspire Record 302771 DOI 10.17182/hepdata.29466

Using 106 000 hadronic events obtained with the ALEPH detector at LEP at energies close to the Z resonance peak, the strong coupling constant α s is measured by an analysis of energy-energy correlations (EEC) and the global event shape variables thrust, C -parameter and oblateness. It is shown that the theoretical uncertainties can be significantly reduced if the final state particles are first combined in clusters using a minimum scaled invariant mass cut, Y cut , before these variables are computed. The combined result from all shape variables of pre-clustered events is α s ( M Z 2 = 0.117±0.005 for a renormalization scale μ= 1 2 M Z . For μ values between M Z and the b-quark mass, the result changes by −0.009 +0.006 .

2 data tables

No description provided.

Error contains both experimental and theoretical errors.


Determination of alpha-s from energy-energy correlations measured on the Z0 resonance.

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 257 (1991) 469-478, 1991.
Inspire Record 324427 DOI 10.17182/hepdata.29467

We present a study of energy-energy correlations based on 83 000 hadronic Z 0 decays. From this data we determine the strong coupling constant α s to second order QCD: α s (91.2 GeV)=0.121±0.004(exp.)±0.002(hadr.) −0.006 +0.009 (scale)±0.006(theor.) from the energy-energy correlation and α s (91.2 GeV)=0.115±0.004(exp.) −0.004 +0.007 (hadr.) −0.000 +0.002 (scale) −0.005 +0.003 (theor.) from its asymmetry using a renormalization scale μ 1 =0.1 s . The first error (exp.) is the systematic experimental uncertainly, the statistical error is negligible. The other errors are due to hadronization (hadr.), renormalization scale (scale) uncertainties, and differences between the calculated second order corrections (theor.).

3 data tables

Statistical errors are equal to or less than 0.6 pct in each bin. There is also a 4 pct systematic uncertainty.

ALPHA_S from the EEC measurement.. The first error given is the experimental error which is mainly the overall systematic uncertainty: the first (DSYS) error is due to hadronization, the second to the renormalization scale, and the third differences between the calculated and second order corrections.

ALPHA_S from the AEEC measurement.. The first error given is the experimental error which is mainly the overall systematic uncertainty: the first (DSYS) error is due to hadronization, the second to the renormalization scale, and the third differences between the calculated and second order corrections.


Properties of multi - hadronic events with a final state photon at s**(1/2) = M (Z0)

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 54 (1992) 193-210, 1992.
Inspire Record 322027 DOI 10.17182/hepdata.14650

The properties of final state photons in multihadronic decays of theZ0 and those of the recoiling hadronic system are discussed and compared with theoretical expectations. The yield of two and three jet events with final state photons is found to be in good agreement with the expectation from a matrix element calculation ofO(ααs. Uncertainties in the interpretation of the theoretical calculation do not yet permit a final assessment of events with just one reconstructed jet. Comparing the rates of two jet events with a photon to those of three jet events in the inclusive multihadronic sample, the strong coupling constant in second order is determined asαs\((M_{Z^0 } )\)=0.122±0.010, taking into account only the statistical and experimental systematic errors. It is found that an abelian model of the strong interaction does not describe the data. The comparison of the total yield and the jet rates with QCD shower programs shows better agreement with the ARIADNE model than with the JETSET model. Both programs are found to describe well the photon properties and the properties of the residual hadronic event.

4 data tables

No description provided.

No description provided.

No description provided.

More…

An Improved measurement of alpha-s (M (Z0)) using energy correlations with the OPAL detector at LEP

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 276 (1992) 547-564, 1992.
Inspire Record 321657 DOI 10.17182/hepdata.29245

We report on an improved measurement of the value of the strong coupling constant σ s at the Z 0 peak, using the asymmetry of the energy-energy correlation function. The analysis, based on second-order perturbation theory and a data sample of about 145000 multihadronic Z 0 decays, yields α s ( M z 0 = 0.118±0.001(stat.)±0.003(exp.syst.) −0.004 +0.0009 (theor. syst.), where the theoretical systematic error accounts for uncertainties due to hadronization, the choice of the renormalization scale and unknown higher-order terms. We adjust the parameters of a second-order matrix element Monte Carlo followed by string hadronization to best describe the energy correlation and other hadronic Z 0 decay data. The α s result obtained from this second-order Monte Carlo is found to be unreliable if values of the renormalization scale smaller than about 0.15 E cm are used in the generator.

2 data tables

Value of LAMBDA(MSBAR) and ALPHA_S.. The first systematic error is experimental, the second is from theory.

The EEC and its asymmetry at the hadron level, unfolded for initial-state radiation and for detector acceptance and resolution. Errors include full statistical and systematic uncertainties.


Determination of $alpha_{s}$ in second order {QCD} from hadronic $Z$ decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Z.Phys.C 54 (1992) 55-74, 1992.
Inspire Record 333272 DOI 10.17182/hepdata.14603

Distributions of event shape variables obtained from 120600 hadronicZ decays measured with the DELPHI detector are compared to the predictions of QCD based event generators. Values of the strong coupling constant αs are derived as a function of the renormalization scale from a quantitative analysis of eight hadronic distributions. The final result, αs(MZ), is based on second order perturbation theory and uses two hadronization corrections, one computed with a parton shower model and the other with a QCD matrix element model.

9 data tables

Experimental differential Thrust distributions.

Experimental differential Oblateness distributions.

Experimental differential C-parameter distributions.

More…

A Global determination of alpha-s (M(z0)) at LEP

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 55 (1992) 1-24, 1992.
Inspire Record 333079 DOI 10.17182/hepdata.14606

The value of the strong coupling constant,$$\alpha _s (M_{Z^0 } )$$, is determined from a study of 15 d

16 data tables

Differential jet mass distribution for the heavier jet using method T. The data are corrected for the finite acceptance and resolution of the detector and for initial state photon radiation.

Differential jet mass distribution for the jet mass difference using methodT. The data are corrected for the finite acceptance and resolution of the detec tor and for initial state photon radiation.

Differential jet mass distribution for the heavier jet using method M. The data are corrected for the finite acceptance and resolution of the detector and for initial state photon radiation.

More…

Measurement of alpha-s in hadronic Z decays using all orders resummed predictions

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Phys.Lett.B 284 (1992) 163-176, 1992.
Inspire Record 333334 DOI 10.17182/hepdata.48421

None

1 data table

Three different methods are used for extraction Alphas value (see text for details). Systematical errors with C=HADR and C=THEOR are due to hadronization correction and theoretical uncertainties.


Determination of alpha-s from hadronic event shapes measured on the Z0 resonance

The L3 collaboration Adrian, O. ; Aguilar-Benitez, M. ; Ahlen, S. ; et al.
Phys.Lett.B 284 (1992) 471-481, 1992.
Inspire Record 334951 DOI 10.17182/hepdata.29157

We present a study of the global event shape variables thrust and heavy jet mass, of energy-energy correlations and of jet multiplicities based on 250 000 hadronic Z 0 decays. The data are compared to new QCD calculations including resummation of leading and next-to-leading logarithms to all orders. We determine the strong coupling constant α s (91.2 GeV) = 0.125±0.003 (exp) ± 0.008 (theor). The first error is the experimental uncertainty. The second error is due to hadronization uncertainties and approximations in the calculations of the higher order corrections.

3 data tables

Measured EEC distribution corrected for detector effects and photon radiation. Errors are combined statistical and systematic uncertainties.

Measured average jet multiplicities for the K_PT algorithm. All numbers are corrected for detector effects and photon radiation. Errors are combined statistical and systematic uncertainties.

Value of strong coupling constant, alpha_s, determined from the data. First error is experimental, the second is theoretical.


Determination of alpha-s using the next-to-leading log approximation of QCD

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 59 (1993) 21-34, 1993.
Inspire Record 354909 DOI 10.17182/hepdata.50115

A new measurement of αs is obtained from the distributions in thrust, heavy jet mass, energy-energy correlation and two recently introduced jet broadening variables following a method proposed by Cata

7 data tables

Thrust distribution corrected for detector acceptance and initial state photon radiation.

Heavy jet mass (RHO) distribution (THRUST definition) corrected for detect or acceptance and initial state photon radiation.

Heavy jet mass (RHOM) distribution (MASS definition) corrected for detectoracceptance and initial state photon radiation.

More…

Determination of alpha-s from the scaling violation in the fragmentation functions in e+ e- annihilation

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 311 (1993) 408-424, 1993.
Inspire Record 355937 DOI 10.17182/hepdata.48411

A determination of the hadronic fragmentation functions of the Z 0 boson is presented from a study of the inclusive hadron production with the DELPHI detector at LEP. These fragmentation functions were compared with the ones at lower energies, thus covering data in a large kinematic range: 196 ⩽ Q 2 ⩽ 8312 GeV 2 and x (= P h E beam ) > 0.08 . A large scaling violation was observed, which was used to extract the strong coupling constant in second order QCD: α s ( M Z ) = 0.118 ± 0.005. The corresponding QCD scale for five quark flavours is: Λ (5) MS = 230 ± 60 MeV .

2 data tables

No description provided.

Extraction of strong coupling constant ALP_S and the LAMQCD)MSBAR values.


Direct photon production in anti-p p and p p interactions at s**(1/2) = 24.3-GeV

The UA6 collaboration Sozzi, G. ; Ballocchi, G. ; Bernasconi, A. ; et al.
Phys.Lett.B 317 (1993) 243-249, 1993.
Inspire Record 358422 DOI 10.17182/hepdata.28782

Inclusive direct photon invariant cross sections have been measured in both p p and pp collisions at √ s = 24.3 GeV at the CERN SPS, permitting the first measurement of the difference of the p p and pp cross sections. The direct photon cross section in p p collisions has been found to be systematically larger than that in pp collisions, which indicates a significant contribution of the q q annihilation term as predicted by theoretical calculations.

4 data tables

No description provided.

No description provided.

No description provided.

More…

A Measurement of alpha-s from jet rates at the Z0 resonance

The SLD collaboration Abe, K. ; Abt, I. ; Acton, P.D. ; et al.
Phys.Rev.Lett. 71 (1993) 2528-2532, 1993.
Inspire Record 356912 DOI 10.17182/hepdata.19724

We have determined the strong coupling αs from measurements of jet rates in hadronic decays of Z0 bosons collected by the SLD experiment at SLAC. Using six collinear and infrared safe jet algorithms we compared our data with the predictions of QCD calculated up to second order in perturbation theory, and also with resummed calculations. We find αs(MZ2)=0.118±0.002(stat)±0.003(syst)±0.010(theory), where the dominant uncertainty is from uncalculated higher order contributions.

1 data table

The second systematic error comes from the theoretical uncertainties.


Measurement of alpha-s from energy-energy correlations at the Z0 resonance

The SLD collaboration Abe, K. ; Abt, I. ; Ash, W.W. ; et al.
Phys.Rev.D 50 (1994) 5580-5590, 1994.
Inspire Record 373005 DOI 10.17182/hepdata.17744

We have determined the strong coupling $\as$ from a comprehensive study of energy-energy correlations ($EEC$) and their asymmetry ($AEEC$) in hadronic decays of $Z~0$ bosons collected by the SLD experiment at SLAC. The data were compared with all four available predictions of QCD calculated up to $\Oa2$ in perturbation theory, and also with a resummed calculation matched to all four of these calculations. We find large discrepancies between $\as$ values extracted from the different $\Oa2$ calculations. We also find a large renormalization scale ambiguity in $\as$ determined from the $EEC$ using the $\Oa2$ calculations; this ambiguity is reduced in the case of the $AEEC$, and is very small when the matched calculations are used. Averaging over all calculations, and over the $EEC$ and $AEEC$ results, we obtain $\asz=0.124~{+0.003}_{-0.004} (exp.) \pm 0.009 (theory).$

5 data tables

Statistical errors only.

Statistical errors only.

ALPHAS from the EEC O(ALPHAS**2) measurement.

More…

QCD studies using a cone based jet finding algorithm for e+ e- collisions at LEP

The OPAL collaboration Akers, R. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 63 (1994) 197-212, 1994.
Inspire Record 373000 DOI 10.17182/hepdata.48238

We describe a cone-based jet finding algorithm (similar to that used in\(\bar p\)p experiments), which we have applied to hadronic events recorded using the OPAL detector at LEP. Comparisons are made between jets defined with the cone algorithm and jets found by the “JADE” and “Durham” jet finders usually used ine+e− experiments. Measured jet rates, as a function of the cone size and as a function of the minimum jet energy, have been compared with O(αs2) calculations, from which two complementary measurements\(\alpha _s \left( {M_{Z^0 } } \right)\) have been made. The results are\(\alpha _s \left( {M_{Z^0 } } \right)\)=0.116±0.008 and\(\alpha _s \left( {M_{Z^0 } } \right)\)=0.119±0.008 respectively, where the errors include both experimental and theoretical uncertainties. Measurements are presented of the energy flow inside jets defined using the cone algorithm, and compared with equivalent data from\(\bar p\)p interactions, reported by the CDF collaboration. We find that the jets ine+e− are significantly narrower than those observed in\(\bar p\)p. The main contribution to this effect appears to arise from differences between quark- and gluon-induced jets.

16 data tables

Measured 2 jet production rate as a function of EPSILON, the minimum energy of a jet for a fixed cone radius R = 0.7 radians.

Measured 2 jet production rate as a function of R, the jet cone radius, for a fixed value of the minimum jet energy, EPSILON, of 7 GeV.

Measured 3 jet production rate as a function of EPSILON, the minimum energy of a jet for a fixed cone radius R = 0.7 radians.

More…

Measurement of cross-sections and leptonic forward - backward asymmetries at the z pole and determination of electroweak parameters

The L3 collaboration Acciarri, M. ; Adam, A. ; Adriani, O. ; et al.
Z.Phys.C 62 (1994) 551-576, 1994.
Inspire Record 374696 DOI 10.17182/hepdata.48198

We report on the measurement of the leptonic and hadronic cross sections and leptonic forward-backward asymmetries at theZ peak with the L3 detector at LEP. The total luminosity of 40.8 pb−1 collected

28 data tables

Results from 1990 data. Additional systematic uncertainty of 0.3 pct.

Results from 1991 data. Additional systematic uncertainty of 0.15 pct.

Results from 1992 data. Additional systematic uncertainty of 0.15 pct.

More…

Measurement of alpha-s (M(Z)**2) from hadronic event observables at the Z0 resonance

The SLD collaboration Abe, K. ; Abt, I. ; Ahn, C.J. ; et al.
Phys.Rev.D 51 (1995) 962-984, 1995.
Inspire Record 378545 DOI 10.17182/hepdata.22450

The strong coupling alpha_s(M_Z^2) has been measured using hadronic decays of Z^0 bosons collected by the SLD experiment at SLAC. The data were compared with QCD predictions both at fixed order, O(alpha_s^2), and including resummed analytic formulae based on the next-to-leading logarithm approximation. In this comprehensive analysis we studied event shapes, jet rates, particle correlations, and angular energy flow, and checked the consistency between alpha_s(M_Z^2) values extracted from these different measures. Combining all results we obtain alpha_s(M_Z^2) = 0.1200 \pm 0.0025(exp.) \pm 0.0078(theor.), where the dominant uncertainty is from uncalculated higher order contributions.

16 data tables

Final average value of alpha_s. The second (DSYS) error is from the uncertainty on the theoretical part of the calculation.

TAU is 1-THRUST.

RHO is the normalized heavy jet mass MH**2/EVIS**2.

More…

A Test of the flavor independence of strong interactions

The SLD collaboration Abe, K. ; Abt, I. ; Ahn, C.J. ; et al.
Phys.Rev.D 53 (1996) 2271-2275, 1996.
Inspire Record 382002 DOI 10.17182/hepdata.22341

We present a comparison of the strong couplings of light ($u$, $d$, and $s$), $c$, and $b$ quarks determined from multijet rates in flavor-tagged samples of hadronic $Z~0$ decays recorded with the SLC Large Detector at the SLAC Linear Collider. Flavor separation on the basis of lifetime and decay multiplicity differences among hadrons containing light, $c$, and $b$ quarks was made using the SLD precision tracking system. We find: $\alpha_s{_{\vphantom{y}}}~{uds}/{\alpha_s{_{\vphantom{y}}}~{\rm all}} = 0.987 \pm 0.027({\rm stat}) \pm 0.022({\rm syst}) \pm 0.022({\rm theory})$, $\alpha_s{_{\vphantom{y}}}~c/{\alpha_s{_{\vphantom{y}}}~{\rm all}} = 1.012 \pm 0.104 \pm 0.102 \pm 0.096$, and $\alpha_s{_{\vphantom{y}}}~b/{\alpha_s{_{\vphantom{y}}}~{\rm all}} = 1.026 \pm 0.041 \pm 0.041\pm 0.030.$

1 data table

No description provided.


Test of the flavor independence of alpha-s

The ALEPH collaboration Buskulic, D. ; Casper, D. ; De Bonis, I. ; et al.
Phys.Lett.B 355 (1995) 381-393, 1995.
Inspire Record 393416 DOI 10.17182/hepdata.48177

Using about 950000 hadronic events collected during 1991 and 1992 with the ALEPH detector, the ratios r b = α s b α s udsc and r uds = α s uds α s cb have been measured in order to test the flavour independence of the strong coupling constant α s . The analysis is based on event-shape variables using the full hadronic sample, two b -quark samples enriched by lepton tagging and lifetime tagging, and a light-quark sample enriched by lifetime antitagging. The combined results are r b = 1.002±0.023 and r uds = 0.971 ± 0.023.

1 data table

No description provided.


Comparison of a new calculation of energy-energy correlations with e+ e- ---> hadrons data at the Z0 resonance

The SLD collaboration Abe, K. ; Abt, I. ; Ahn, C.J. ; et al.
Phys.Rev.D 52 (1995) 4240-4244, 1995.
Inspire Record 39718 DOI 10.17182/hepdata.22336

We have compared a new QCD calculation by Clay and Ellis of energy-energy correlations (EEC’s) and their asymmetry (AEEC’s) in e+e− annihilation into hadrons with data collected by the SLD experiment at SLAC. From fits of the new calculation, complete at O(αs2), we obtained αs(MZ2)=0.1184±0.0031(expt)±0.0129(theory) (EEC) and αs(MZ2)=0.1120±0.0034(expt)±0.0036(theory) (AEEC). The EEC result is significantly lower than that obtained from comparable fits using the O(αs2) calculation of Kunszt and Nason.

1 data table

The data are compared to the predictions of Monte-Carlo. Two values of ALPHA_S are corresponded the two theoretical models used in the comparison.


Measurement of alpha-s from scaling violations in fragmentation functions in e+ e- annihilation

The ALEPH collaboration Buskulic, D. ; Casper, D. ; De Bonis, I. ; et al.
Phys.Lett.B 357 (1995) 487-499, 1995.
Inspire Record 398195 DOI 10.17182/hepdata.47843

A study of scaling violations in fragmentation functions performed by the ALEPH collaboration at LEP is presented. Data samples enriched in uds, c, b and gluon jets, respectively, together with measurements of the longitudinal and transverse inclusive cross sections are used to extract the fragmentation function for the gluon and for each flavour. The measurements are compared to data from experiments at energies between 22 GeV and 91 GeV and scaling violations consistent with QCD predictions are observed. From this, a measurement of the strong coupling constant α s ( Mz ) = 0.126 ±0.009 is obtained.

4 data tables

No description provided.

No description provided.

No description provided.

More…

Energy dependence of the differences between the quark and gluon jet fragmentation

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 70 (1996) 179-196, 1996.
Inspire Record 403254 DOI 10.17182/hepdata.48064

Three jet events arising from decays of the Z boson, collected by the DELPHI detector, were used to measure differences in quark and gluon fragmentation. Gluon jets were anti-tagged by identifying b quark jets. Unbiased quark jets came from events with two jets plus one photon. Quark and gluon jet properties in different energy ranges were compared for the first time within the same detector. Quark and gluon jets of nearly the same energy in symmetric three jet event topologies were also compared. Using three independent methods, the average value of the ratio of the mean charged multiplicities of gluon and quark jets is $$< r >=1.241 pm 0.015 (stat.)pm 0.025 (syst.).$$ Gluon jets are broader and produce fragments with a softer energy spectrum than quark jets of equivalent energy. The string effect has been observed in fully symmetric three jet events. The measured ratio Rγ of the charged particle flow in the qq̅ inter-jet region of the qq̅g and qq̅γ samples agrees with the perturbative QCD expectation. The dependence of the mean charged multiplicity on the hadronic center-of-mass energy was analysed in photon plus n-jet events. The value for αs(MZ) determined from these data using a QCD prediction with corrections at leading and next-to-leading order is $$←pha_s(M_Z)=0.116pm 0.003 (stat.)pm 03009 (syst.).$$

2 data tables

No description provided.

Durham and JADE algoritms were used.


A measurement of alpha(s) from the scaling violation in e+ e- annihilation.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 398 (1997) 194-206, 1997.
Inspire Record 428178 DOI 10.17182/hepdata.47581

The hadronic fragmentation functions of the various quark flavours and of gluons are measured in a study of the inclusive hadron production from Z 0 decays with the DELPHI detector and are compared with the fragmentation functions measured elsewhere at energies between 14 GeV and 91 GeV. A large scaling violation is observed, which is used to extract the strong coupling constant from a fit using a numerical integration of the second order DGLAP evolution equations. The result is α s ( M Z ) = 0.124 −0.007 +0.006 (exp) ± 0.009(theory) where the first error represents the experimental uncertainty and the second error is due to the factorization and renormalization scale dependence.

2 data tables

SIG(Q=BQ, Q=CQ, Q=UDS) corresponds to BQ, CQ, and U,D,S quarks fragmentation into charged hadron.

alpha_s was evaluated from the scaling violation of the fragmentation func tions. The data from other experiments are used for the fitting procedure.