The slope parameter of the differential cross-section of elastic p-p scattering in energy range 12-70 gev

Beznogikh, G.G. ; Buyak, A. ; Iovchev, K.I. ; et al.
Phys.Lett.B 30 (1969) 274-275, 1969.
Inspire Record 56659 DOI 10.17182/hepdata.28895

The measurements of the differential cross section of elastic p-p scattering in relative units were performed in the energy range of 12–70 GeV. The values of the slope parameter were obtained from this data. It was shown that the slope parameter of the differential p-p scattering is monotonously increasing when the proton energy rises in the range 12–70 GeV. We have obtained the slope Pomeranchuk's pole trajectory from this data: α′ p = 0.40 ± 0.09.

1 data table

No description provided.


Small angle proton proton elastic scattering from 9 to 70 gev/c

Beznogikh, G.G. ; Bujak, A. ; Kirillova, L.F. ; et al.
Phys.Lett.B 39 (1972) 411-413, 1972.
Inspire Record 75806 DOI 10.17182/hepdata.28333

Proton-proton elastic scattering has been measured over the four-momentum transfer squared 0.0007 ⩽ t ⩽ 0.02 GeV 2 /c 2 . A gas hydrogen jet has been used as an internal target of the accelerator. The results indicate that the ratio of the real to the imaginary part of the proton-proton forward scattering amplitude rises smoothly with increasing energy from α = −0.35 ± 0.05 at p = 9.39 GeV/ c to α = −0.092 ± 0.011 at p = 69.8 GeV/ c .

1 data table

THE TOTAL ELASTIC CROSS SECTION IS DERIVED FROM THE OPTICAL THEOREM POINT AND SLOPE PARAMETER.


Small Angle Elastic Proton Proton Scattering from 25-GeV to 200-GeV.

Bartenev, V. ; Kuznetsov, A. ; Morozov, B. ; et al.
Phys.Rev.Lett. 29 (1972) 1755-1758, 1972.
Inspire Record 73778 DOI 10.17182/hepdata.21428

We have measured the differential cross section for small angle p−p scattering from 25 to 200 GeV incident energy and in the momentum transfer range 0.015<|t|<0.080 (GeVc)2. We find that the slope of the forward diffraction peak, b(s), increases with energy and can be fitted by the form b(s)=b0+2α′ lns, where b0=8.3±1.3 and α′=0.28±0.13 (GeVc)−2. Such dependence is compatible with the data existing both at higher and lower energies. We have also obtained the energy dependence of the p−p total cross section in the energy range from 48 to 196 GeV. Within our errors which are ± 1.1 mb the total cross section remains constant.

2 data tables

No description provided.

THE TOTAL CROSS SECTION IS NORMALIZED TO 38.5 +- 0.1 MB AT 48 GEV. IT HAS BEEN DERIVED USING THE OPTICAL THEOREM FROM THE EXTRAPOLATED FORWARD ELASTIC CROSS SECTION AND WITH ALPHA = -0.09.


Differential cross-sections of elastic p p scattering in the energy range 8-70 gev

Beznogikh, G.G. ; Bujak, A. ; Kirillova, L.F. ; et al.
Nucl.Phys.B 54 (1973) 78-96, 1973.
Inspire Record 84176 DOI 10.17182/hepdata.8006

In this paper we present tables of absolute differential cross sections of elastic pp scattering together with the values of the slope parameter B and the real-part parameter α, where B= d d t In dσ d t α= Re A(0) Im A(0) and A (0) is the amplitude of elastic pp scattering at t = 0. The cross-section data have been obtained at the Serpukhov accelerator from 8 to 70 GeV in the | t |-range 0.0007 − 0.12 (GeV/ c ) 2 .

30 data tables

No description provided.

No description provided.

No description provided.

More…

Real Part of the Proton-Proton Forward Scattering Amplitude from 50-GeV to 400-GeV.

Bartenev, V. ; Carrigan, Richard A. ; Chiang, I-Hung ; et al.
Phys.Rev.Lett. 31 (1973) 1367-1370, 1973.
Inspire Record 81733 DOI 10.17182/hepdata.21379

From measurements of proton-proton elastic scattering at very small momentum transfers where the nuclear and Coulomb amplitudes interfere, we have deduced values of ρ, the ratio of the real to the imaginary forward nuclear amplitude, for energies from 50 to 400 GeV. We find that ρ increases from -0.157 ± 0.012 at 51.5 GeV to +0.039 ± 0.012 at 393 GeV, crossing zero at 280 ± 60 GeV.

1 data table

No description provided.


Measurement of the Slope of the Diffraction Peak for Elastic pp Scattering from 8-GeV to 400-GeV.

Bartenev, V. ; Kuznetsov, A. ; Morozov, B. ; et al.
Phys.Rev.Lett. 31 (1973) 1088-1091, 1973.
Inspire Record 81722 DOI 10.17182/hepdata.21381

The slope b(s) of the forward diffraction peak of p−p elastic scattering has been measured in the momentum-transfer-squared range 0.005≲|t|≲0.09 (GeV/c)2 and at incident proton energies from 8 to 400 GeV. We find that b(s) increases with s, and in the interval 100≲s≲750 (GeV)2 it can be fitted by the form b(s)=b0+2α′lns with b0=8.23±0.27, α′=0.278±0.024 (GeV/c)−2.

1 data table

MOMENTUM BINS ARE APPROX 20 GEV WIDE CENTRED AT THE GIVEN PLAB EXCEPT FOR THE 9 AND 12 GEV POINTS WHICH HAVE WIDTHS OF APPROX 1 AND 4 GEV RESPECTIVELY.


Updated Charged-Particle Multiplicity Distribution from 205-GeV/c Proton Proton Interactions

Barish, S. ; Cho, Y. ; Colley, D.C. ; et al.
Phys.Rev.D 9 (1974) 2689, 1974.
Inspire Record 609 DOI 10.17182/hepdata.21974

The charged-particle multiplicity distribution in 205−GeVc proton-proton interactions is presented. In addition, the total diffractive contributions to each charged multiplicity are estimated assuming a factorizable Pomeron.

1 data table

THE TOTAL CROSS SECTION NORMALIZATION COMES FROM THIS AND OTHER EXPERIMENTS.


Analysis of Two Prong Events on p p Interactions at 205-GeV/c: Separation of Elastic and Inelastic Events.

Barish, S. ; Colley, D. ; Derrick, M. ; et al.
Phys.Rev.D 9 (1974) 1171-1179, 1974.
Inspire Record 93436 DOI 10.17182/hepdata.21998

We present results of complete measurements of the two-prong events observed in a 50 000-picture exposure of the 30-in. hydrogen bubble chamber to a 205−GeVc proton beam at the National Accelerator Laboratory. Using kinematic fitting, elastic and inelastic events are separated and cross sections are obtained. The total two-prong cross section is measured to be 9.77 ± 0.40 mb, of which 2.85 ± 0.26 mb represents the inelastic contribution. The total elastic cross section is measured to be 6.92 ± 0.44 mb. Our data are consistent with the break in dσdt at |t|∼0.1−0.2 (GeVc)2 observed at the CERN ISR. A prominent low-mass enhancement is observed in the distribution of missing mass squared from the slow proton for the inelastic events. An analysis based on the missing-mass spectrum and the particle rapidities shows that this low-mass enhancement accounts for about 77% of the total inelastic two-prong cross section. The diffractive cross section in the two-prong events is 2.20 ± 0.25 mb, in agreement with certain two-component models.

2 data tables

USING A TOTAL CROSS SECTION OF 39.0 +- 1.0 MB.

No description provided.


Observation of a Diffraction Minimum in the Proton Proton Elastic Scattering at the ISR

Böhm, A. ; Bozzo, M. ; Ellis, R. ; et al.
Phys.Lett.B 49 (1974) 491-496, 1974.
Inspire Record 89421 DOI 10.17182/hepdata.27962

We have investigated the pp elastic scattering at the CERN Intersecting Storage Rings (ISR). We report results for centre-of-mass scattering angles between 30 and 100 mrad and for centre-of-mass energies of 23.5,30.7, 44.9 and 53 GeV. The elastic differential cross-section shows a diffraction-like shape with a sharp minimum at about t = −1.4 GeV 2 .

8 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of the Real Part of the Proton Proton Forward Scattering Amplitude from 80-GeV to 286-GeV by Means of Silicon Position Sensitive Detectors

Bartenev, V. ; Carrigan, Richard A. ; Cool, R.L. ; et al.
Sov.J.Nucl.Phys. 23 (1976) 400, 1976.
Inspire Record 100255 DOI 10.17182/hepdata.19082

None

1 data table

THE ERRORS INCLUDE THE UNCERTAINTIES IN THE FIT PARAMETERS SLOPE AND SIG, WHILE THE PURELY STATISTICAL ERRORS ARE ALSO GIVEN.