A secondary peak at t = −1 (GeV/c)2 in high energy π-p charge exchange scattering

Sonderegger, P. ; Kirz, J. ; Guisan, O. ; et al.
Phys.Lett. 20 (1966) 75-78, 1966.
Inspire Record 1498686 DOI 10.17182/hepdata.75504

None

23 data tables

No description provided.

No description provided.

No description provided.

More…

π−+p→π0+n Charge-Exchange Scattering at High Energies

Mannelli, I. ; Bigi, A. ; Carrara, R. ; et al.
Phys.Rev.Lett. 14 (1965) 408, 1965.
Inspire Record 1474811 DOI 10.17182/hepdata.75497

Phys. Rev. Lett. 14, 408 (1965)

6 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of the $\pi^{-} p \rightarrow X^{0}n$ cross section in the momentum up to 50 GeV/c

Bolotov, V.N. ; Isakov, V.V. ; Kakuridze, D.B. ; et al.
Sov.J.Nucl.Phys. 19 (1974) 308-310, 1974.
Inspire Record 1392569 DOI 10.17182/hepdata.19171

None

2 data tables

No description provided.

No description provided.


The π+-π− interaction as studied in 12 and 18 GeV pion-nucleon reactions

Jones, L.W. ; Caldwell, D.O. ; Zacharov, B. ; et al.
Phys.Lett. 21 (1966) 590-594, 1966.
Inspire Record 1385169 DOI 10.17182/hepdata.29927

From a study of peripheral interactions wherein a negative pion of 12 or 18 GeV/c incident on a nucleon produced a pair of high-momentum pions, the pion-pion s-wave interaction was deduced. Normalizing to to the ϱo production cross sections, a pion-pion cross section falling smoothly from 50 mb (300 MeV) to 20 mb (600 MeV) is observed. The forward-backward asymmetry is negative for low dipion masses.

3 data tables

The errors are statistical only.

The errors are statistical only.

No errors are given.


Comprehensive evidence about a narrow p anti-p state of mass 2.02-GeV/c**2.

Ferrer, A. ; Grigorian, A.A. ; Perepelitsa, V.F. ; et al.
Eur.Phys.J.C 10 (1999) 249-263, 1999.
Inspire Record 471000 DOI 10.17182/hepdata.49489

We review earlier results, and add new evidence, on the existence of a narrow ${\mathrm{p}}\overline{\mathrm{p}}$ state at a mass of 2.02 GeV $/c^

2 data tables

Cross section times branching ratio. Statistical errors only.

Cross section times branching ratio. Statistical errors only.


Resonance behavior of a K(S) K(S) system near the mass 1775-MeV.

Barkov, B.P. ; Baloshin, O.N. ; Batalova, N.V. ; et al.
JETP Lett. 68 (1998) 764-769, 1998.
Inspire Record 482985 DOI 10.17182/hepdata.16825

The preliminary results of an investigation of a system of two K S mesons in the mass interval 1600–1950 MeV are reported. The events were obtained on a 6-m magnetic spark spectrometer at ITEP in π − p interactions at 40 GeV, using a neutral trigger which suppressed both charged particles and γ rays. A peak of width ≃30 MeV with statistical significance not lower than six standard deviations is observed with momentum transfer selection |tu|0.23 GeV2 near the mass 1775 MeV of the K S K S system. The observed phenomena can be interpreted as the existence of one resonance with the indicated parameters, or two narrower resonances. In the latter case, their masses are 1768±1.5 and 1787±1.5 MeV. The widths of these states are comparable to the mass resolution of the spectrometer (∼5 MeV). Estimates of the product σ ⋅BR(K S K S ) give ∼1.5 and 2.5 nb, respectively, for the first and second states.

1 data table

One or two resonances solutions are used.


First observation of strong OZI rule violation in pi N interactions.

Ferrer, A. ; Grigorian, A.A. ; Perepelitsa, V.F. ; et al.
Phys.Lett.B 394 (1997) 395-402, 1997.
Inspire Record 426798 DOI 10.17182/hepdata.47710

The data of the CERN WA56 experiment that triggered the fast proton produced in the π + p and π − p interactions at beam momenta 20 GeV/c and 12 GeV/c, respectively, are used to analyse the final states pfΦ ( ω ) π ± . A large excess (up to two orders of magnitude) of the Φ ω cross sections ratio over the OZI prediction is observed.

10 data tables

No description provided.

No description provided.

No description provided.

More…

Study of quark line selection rule (OZI rule) in hadron processes. 1. Charge exchange OZI suppressed reaction pi- + p ---> phi + n at P(pi-) = 32-GeV/c

Viktorov, V.A. ; Golovkin, S.V. ; Dorofeev, V.A. ; et al.
Phys.Atom.Nucl. 59 (1996) 1175-1183, 1996.
Inspire Record 405705 DOI 10.17182/hepdata.40543

None

1 data table

Axis error includes +- 0.0/0.0 contribution (?////RES-DEF(RES=PHI,BACK=CORRECTED)//DECAY-BR(BRN=PHI --> K+ K-,BR=0.49 +- 0.01)).


Low-energy differential cross-sections of pion proton (pi+- p) scattering. 2: Phase shifts at T(pi) = 32.7-MeV, 45.1-MeV, and 68.6-MeV

Joram, C. ; Metzler, M. ; Jaki, J. ; et al.
Phys.Rev.C 51 (1995) 2159-2165, 1995.
Inspire Record 404659 DOI 10.17182/hepdata.25955

We report on measurements of the differential π±p cross section at pion energies Tπ=32.7, 45.1, and 68.6 MeV. The measurements, covering the angular range 25°≤θlab≤123°, have been carried out at the Paul-Scherrer-Institute (PSI) in Villigen, Switzerland, employing the magnet spectrometer LEPS. The absolute normalization of the π±p cross sections have been achieved by relating them to the electromagnetic cross sections of μ±12C scattering. The results are in agreement with those of our preceding measurements at Tπ=32.2 and 45.1 MeV insofar as they overlap with the region of the Coulomb nuclear interference investigated there. A comparison with the predictions of the Karlsruhe-Helsinki phase shift analysis KH80, which has formed the basis for the determination of the ‘‘experimental’’ σ term, reveals considerable deviations. These are most pronounced for the π+p cross sections at Tπ=32.7 and 45.1 MeV. Single energy partial wave fits result in S-wave contributions, which are about 1° lower in magnitude then those specified by the KH80 solution. The data at 68.6 MeV are in good agreement with the phase shift analysis.

3 data tables

Statistical and systematic errors are addet in quadrature.

Statistical and systematic errors are addet in quadrature.

Statistical and systematic errors are addet in quadrature.


Low-energy differential cross-sections of pion proton (pi+- p) scattering. 1: The Isospin even forward scattering amplitude at T(pi) = 32.2-MeV and 44.6-MeV

Joram, C. ; Metzler, M. ; Jaki, J. ; et al.
Phys.Rev.C 51 (1995) 2144-2158, 1995.
Inspire Record 404658 DOI 10.17182/hepdata.25972

The values of the pion nucleon (πN) σ term, as determined, on the one hand, from experimental pion nucleon scattering by means of dispersion relations and, on the other hand, from baryon masses by means of chiral perturbation theory, differ by 10 to 15 MeV. The origin of this discrepancy is not yet understood. If the difference between the two values is attributed to the scalar current of strange sea quark pairs within the proton, the contribution to the proton mass would be of the order of 120 MeV. The discrepancy may hint at either theoretical deficiencies or an inadequate πN database. In order to provide reliable experimental data we have measured angular distributions of elastic pion proton scattering at pion energies Tπ=32.2 and 44.6 MeV using the magnet spectrometer LEPS located at the Paul-Scherrer-Institute (PSI) in Villigen, Switzerland. From the data covering the region of the Coulomb nuclear interference, the real parts of the isospin-even forward scattering amplitude ReD+(t=0), have been determined as a function of energy. The results have been compared with the predictions of the Karlsruhe-Helsinki phase shift analysis KH80, revealing discrepancies most pronounced for the π+p data. The experimentally determined values for ReD+(t=0), however, support the KH80 prediction (which is based on πN data available in 1979).

2 data tables

Statistical and systematic errors are addet in quadrature.

Statistical and systematic errors are addet in quadrature.