Measurement of inclusive charged-particle jet production in Au+Au collisions at $\sqrt{s_{NN}}$=200 GeV

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.C 102 (2020) 054913, 2020.
Inspire Record 1798665 DOI 10.17182/hepdata.95120

The STAR Collaboration at the Relativistic Heavy Ion Collider reports the first measurement of inclusive jet production in peripheral and central Au+Au collisions at $\sqrt{s_{NN}}$=200 GeV. Jets are reconstructed with the anti-k$_{T}$ algorithm using charged tracks with pseudorapidity $|\eta|<1.0$ and transverse momentum $0.2<p_{T,jet}^{ch}<30$ GeV/$c$, with jet resolution parameter $R$=0.2, 0.3, and 0.4. The large background yield uncorrelated with the jet signal is observed to be dominated by statistical phase space, consistent with a previous coincidence measurement. This background is suppressed by requiring a high-transverse-momentum (high-$p_T$) leading hadron in accepted jet candidates. The bias imposed by this requirement is assessed, and the $p_T$ region in which the bias is small is identified. Inclusive charged-particle jet distributions are reported in peripheral and central Au+Au collisions for $5<p_{T,jet}^{ch}<25$ GeV/$c$ and $5<p_{T,jet}^{ch}<30$ GeV/$c$, respectively. The charged-particle jet inclusive yield is suppressed for central Au+Au collisions, compared to both the peripheral Au+Au yield from this measurement and to the $pp$ yield calculated using the PYTHIA event generator. The magnitude of the suppression is consistent with that of inclusive hadron production at high $p_T$, and that of semi-inclusive recoil jet yield when expressed in terms of energy loss due to medium-induced energy transport. Comparison of inclusive charged-particle jet yields for different values of $R$ exhibits no significant evidence for medium-induced broadening of the transverse jet profile for $R<0.4$ in central Au+Au collisions. The measured distributions are consistent with theoretical model calculations that incorporate jet quenching.

12 data tables

Corrected inclusive charged-particle jet distributions in Au+Au collisions at 200 GeV for R=0.2, 0.3, and 0.4 in central (0-10%) Au+Au collisions for pTlead,min = 5 GeV/c. The first uncertainty is statistical (symmetric), followed by shape uncertainty (asymmetric) and correlated uncertainty (asymmetric).

Corrected inclusive charged-particle jet distributions in Au+Au collisions at 200 GeV for R=0.2, 0.3, and 0.4 in peripheral (60-80%) Au+Au collisions for pTlead,min = 5 GeV/c. The first uncertainty is statistical (symmetric), followed by shape uncertainty (asymmetric) and correlated uncertainty (asymmetric).

Corrected inclusive charged-particle jet distributions in Au+Au collisions at 200 GeV for R=0.2, 0.3, and 0.4 in central (0-10%) Au+Au collisions for pTlead,min = 7 GeV/c. The first uncertainty is statistical (symmetric), followed by shape uncertainty (asymmetric) and correlated uncertainty (asymmetric).

More…

Upsilon production in U+U collisions at 193 GeV with the STAR experiment

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 94 (2016) 064904, 2016.
Inspire Record 1482939 DOI 10.17182/hepdata.98624

We present a measurement of the inclusive production of Upsilon mesons in U+U collisions at 193 GeV at mid-rapidity (|y| < 1). Previous studies in central Au+Au collisions at 200 GeV show a suppression of Upsilon(1S+2S+3S) production relative to expectations from the Upsilon yield in p+p collisions scaled by the number of binary nucleon-nucleon collisions (Ncoll), with an indication that the Upsilon(1S) state is also suppressed. The present measurement extends the number of participant nucleons in the collision (Npart) by 20% compared to Au+Au collisions, and allows us to study a system with higher energy density. We observe a suppression in both the Upsilon(1S+2S+3S) and Upsilon(1S) yields in central U+U data, which consolidates and extends the previously observed suppression trend in Au+Au collisions.

5 data tables

(Color online) $\Upsilon$(1S+2S+3S) (a) and $\Upsilon$(1S) (b) $R_{AA}$ vs. $N_{part}$ in $\sqrt{s_{NN}}$ = 193 GeV U+U collisions (solid circles), compared to 200 GeV RHIC Au+Au (solid squares [13] and hollow crosses [32]), and 2.76 TeV LHC Pb+Pb data (solid diamonds [33]). A 95% lower confidence bound is indicated for the 30-60% centrality U+U data (see text). Each point is plotted at the center of its bin. Centrality integrated (0-60%) U+U and Au+Au data are also shown as open circles and squares, respectively.

(Color online) $\Upsilon$(1S+2S+3S) (a) and $\Upsilon$(1S) (b) $R_{AA}$ vs. $N_{part}$ in $\sqrt{s_{NN}}$ = 193 GeV U+U collisions (solid circles), compared to 200 GeV RHIC Au+Au (solid squares [13] and hollow crosses [32]), and 2.76 TeV LHC Pb+Pb data (solid diamonds [33]). A 95% lower confidence bound is indicated for the 30-60% centrality U+U data (see text). Each point is plotted at the center of its bin. Centrality integrated (0-60%) U+U and Au+Au data are also shown as open circles and squares, respectively.

(Color online) $\Upsilon$(1S+2S+3S) (a) and $\Upsilon$(1S) (b) $R_{AA}$ vs. $N_{part}$ in $\sqrt{s_{NN}}$ = 193 GeV U+U collisions (solid circles), compared to different models [36–38], described in the text. The 95% lower confidence bound is indicated for the 30-60% centrality U+U data (see text). Each point is plotted at the center of its bin. Centrality integrated (0-60%) U+U and Au+Au data are also shown as open circles and squares, respectively.

More…

Energy dependence of $J/\psi$ production in Au+Au collisions at $\sqrt{s_{NN}} =$ 39, 62.4 and 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Lett.B 771 (2017) 13-20, 2017.
Inspire Record 1478040 DOI 10.17182/hepdata.104506

The inclusive $J/\psi$ transverse momentum ($p_{T}$) spectra and nuclear modification factors are reported at midrapidity ($|y|<1.0$) in Au+Au collisions at $\sqrt{s_{NN}}=$ 39, 62.4 and 200 GeV taken by the STAR experiment. A suppression of $J/\psi$ production, with respect to {\color{black}the production in $p+p$ scaled by the number of binary nucleon-nucleon collisions}, is observed in central Au+Au collisions at these three energies. No significant energy dependence of nuclear modification factors is found within uncertainties. The measured nuclear modification factors can be described by model calculations that take into account both suppression of direct $J/\psi$ production due to the color screening effect and $J/\psi$ regeneration from recombination of uncorrelated charm-anticharm quark pairs.

6 data tables

J/psi invariant yields in Au+Au collisions = 39 GeV as a function of pT for different centralities.

J/psi invariant yields in Au+Au collisions = 62.4 GeV as a function of pT for different centralities.

J/psi invariant yields in Au+Au collisions = 200 GeV as a function of pT for different centralities.

More…

Disappearance of the Mach Cone in heavy ion collisions

Nattrass, Christine ; Sharma, Natasha ; Mazer, Joel ; et al.
Phys.Rev.C 94 (2016) 011901, 2016.
Inspire Record 1466814 DOI 10.17182/hepdata.73675

We present an analysis of di-hadron correlations using recently developed methods for background subtraction which allow for higher precision measurements with fewer assumptions about the background. These studies indicate that low momentum jets interacting with the medium do not equilibrate with the medium, but rather that interactions with the medium lead to more subtle increases in their widths and fragmentation functions, consistent with observations from studies of higher momentum fully reconstructed jets. The away-side shape is not consistent with a Mach cone.

13 data tables

Background subtracted dihadron correlations with 4 $< p_T^{t} <$ 6 GeV/$c$ for 1.5 $< p_T^{a} <$ 2.0 GeV/$c$ in d+Au and Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV in bins of the trigger particle relative to the reaction plane. Statistical uncertainties are nontrivially correlate point to point.

Background subtracted dihadron correlations with 4 $< p_T^{t} <$ 6 GeV/$c$ for 2.0 $< p_T^{a} <$ 3.0 GeV/$c$ in d+Au and Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV in bins of the trigger particle relative to the reaction plane. Statistical uncertainties are nontrivially correlate point to point.

Background subtracted dihadron correlations with 4 $< p_T^{t} <$ 6 GeV/$c$ for 3.0 $< p_T^{a} <$ 4.0 GeV/$c$ in d+Au and Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV in bins of the trigger particle relative to the reaction plane. Statistical uncertainties are nontrivially correlate point to point.

More…

Rapidity and centrality dependence of particle production for identified hadrons in Cu+Cu collisions at $\sqrt{s_{NN}} = 200$ GeV

The BRAHMS collaboration Arsene, I.C. ; Bearden, I.G. ; Beavis, D. ; et al.
Phys.Rev.C 94 (2016) 014907, 2016.
Inspire Record 1419279 DOI 10.17182/hepdata.89453

The BRAHMS collaboration has measured transverse momentum spectra of pions, kaons, protons and antiprotons at rapidities 0 and 3 for Cu+Cu collisions at $\sqrt{s_{NN}} = 200$ GeV. As the collisions become more central the collective radial flow increases while the temperature of kinetic freeze-out decreases. The temperature is lower and the radial flow weaker at forward rapidity. Pion and kaon yields with transverse momenta between 1.5 and 2.5 GeV/c are suppressed for central collisions relative to scaled $p+p$ collisions. This suppression, which increases as the collisions become more central is consistent with jet quenching models and is also present with comparable magnitude at forward rapidity. At such rapidities initial state effects may also be present and persistence of the meson suppression to high rapidity may reflect a combination of jet quenching and nuclear shadowing. The ratio of protons to mesons increases as the collisions become more central and is largest at forward rapidities.

138 data tables

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

More…

Version 3
Single electron yields from semileptonic charm and bottom hadron decays in Au$+$Au collisions at $\sqrt{s_{NN}}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 93 (2016) 034904, 2016.
Inspire Record 1393529 DOI 10.17182/hepdata.99752

The PHENIX Collaboration at the Relativistic Heavy Ion Collider has measured open heavy-flavor production in minimum bias Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV via the yields of electrons from semileptonic decays of charm and bottom hadrons. Previous heavy-flavor electron measurements indicated substantial modification in the momentum distribution of the parent heavy quarks due to the quark-gluon plasma created in these collisions. For the first time, using the PHENIX silicon vertex detector to measure precision displaced tracking, the relative contributions from charm and bottom hadrons to these electrons as a function of transverse momentum are measured in Au$+$Au collisions. We compare the fraction of electrons from bottom hadrons to previously published results extracted from electron-hadron correlations in $p$$+$$p$ collisions at $\sqrt{s_{_{NN}}}=200$ GeV and find the fractions to be similar within the large uncertainties on both measurements for $p_T>4$ GeV/$c$. We use the bottom electron fractions in Au$+$Au and $p$$+$$p$ along with the previously measured heavy flavor electron $R_{AA}$ to calculate the $R_{AA}$ for electrons from charm and bottom hadron decays separately. We find that electrons from bottom hadron decays are less suppressed than those from charm for the region $3<p_T<4$ GeV/$c$.

4 data tables

Bottom and charm hadron invariant yields as a function of $p_{T}$.

Bottom hadron fraction with respect to heavy flavor electron as a function of $p_{T}$.

Bottom and charm hadron $R_{AA}$ as a function of $p_{T}$.

More…

Version 3
Observation of $D^0$ meson nuclear modifications in Au+Au collisions at $\sqrt{s_{_{\mathrm{NN}}}}$ = 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 113 (2014) 142301, 2014.
Inspire Record 1292132 DOI 10.17182/hepdata.73474

In this erratum we report changes on the $D^0$ $p_T$ spectra and nuclear modification factor ($R_{AA}$) in Au+Au collisions at $\sqrt{s_{_{\mathrm{NN}}}}$ = 200 GeV by fixing the errors in the efficiency and selection criteria that affected the Au+Au results. The p+p reference spectrum has changed as well and is updated with new fragmentation parameters.

4 data tables

$D^0$ $p_{\rm T}$ differential invariant yield in p+p collisions (open circles), which has been updated with the latest global analysis of charm fragmentation ratios from Ref and also taking into account the $p_{\rm T}$ dependence of the fragmentation ratio between $D^0$ and $D^{*{\pm}}$ from PYTHIA 6.4. The systematic uncertainties are shown as square brackets.

Centrality dependence of the $D^0$ $p_{\rm T}$ differential invariant yield in Au+Au collisions (solid symbols). The curves are number-of-binary-collision-scaled Levy functions from fitting to the p+p result (open circles), which has been updated with the latest global analysis of charm fragmentation ratios from Ref and also taking into account the $p_{\rm T}$ dependence of the fragmentation ratio between $D^0$ and $D^{*{\pm}}$ from PYTHIA 6.4. The arrow denotes the upper limit with 90% confidence level of the last data point for 10$-$40% collisions. The systematic uncertainties are shown as square brackets.

Panels (ab), $D^0$ $R_{\rm AA}$ for peripheral 40$-$80% and semi a central 10$-$40% collisions; Panel (c), $D^0$ $R_{\rm AA}$ for 0$-$10% most central events (blue circles) compared with model calculations from the TAMU (solid curve), SUBATECH (dashed curve), Torino (dot-dashed curve), Duke (long-dashed and long-dot-dashed curves), and LANL groups (filled band). The open symbol indicates the result with the extrapolated p+p reference. The vertical lines and brackets around the data points denote the statistical and systematic uncertainties respectively. The vertical bars around unity denote the overall normalization uncertainties in the Au+Au and p+p data, respectively. The $R_{\rm AA}$ probability distribution for the 0$-$0.7 GeV/$c$ data point is largely skewed. The uncertainty we report is the 68.3% probability range with respect to the measured central value assuming Gaussian distribution.

More…

J/$\psi$ production at high transverse momenta in p+p and Au+Au collisions at sqrt(s_{NN}) = 200 GeV

The STAR collaboration Adamczyk, L. ; Agakishiev, G. ; Aggarwal, M.M. ; et al.
Phys.Lett.B 722 (2013) 55-62, 2013.
Inspire Record 1127499 DOI 10.17182/hepdata.98623

We report $J/\psi$ spectra for transverse momenta $p_T$> 5 GeV/$c$ at mid-rapidity in p+p and Au+Au collisions at sqrt(s_{NN}) = 200 GeV.The inclusive $J/\psi$ spectrum and the extracted $B$-hadron feed-down are compared to models incorporating different production mechanisms. We observe significant suppression of the $J/\psi$ yields for $p_T$> 5 GeV/$c$ in 0-30% Au+Au collisions relative to the p+p yield scaled by the number of binary nucleon-nucleon collisions in Au+Au collisions. In 30-60% collisions, no such suppression is observed.The level of suppression is consistently less than that of high-$p_T$ $\pi^{\pm}$ and low-$p_T$ $J/\psi$.

5 data tables

(Color online.) The invariant $J/\psi$ cross section versus $p_{T}$ in p+p collisions at $\sqrt{s}$ = 200 GeV. The vertical bars and boxes depict the statistical and systematic uncertainties, respectively. Also shown are results published by STAR [15] and PHENIX [20]. The curves show theoretical calculations described in the text.

(Color online.) The fraction of $B \rightarrow J/\psi$ over the inclusive $J/\psi$ yield in $p+p$ collisions. The FONLL+CEM model calculation is also shown.

$J/\psi$ $p_{T}$ distributions in Au+Au collisions with different centralities at $\sqrt{s_{NN}}$ = 200 GeV. For clarity, the data and curves have been scaled as indicated in the legends. The PHENIX results are reported in [6]. The curves are model fits described in the text.

More…

J/psi suppression at forward rapidity in Au+Au collisions at sqrt(s_NN)=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 84 (2011) 054912, 2011.
Inspire Record 894560 DOI 10.17182/hepdata.100086

Heavy quarkonia are observed to be suppressed in relativistic heavy ion collisions relative to their production in p+p collisions scaled by the number of binary collisions. In order to determine if this suppression is related to color screening of these states in the produced medium, one needs to account for other nuclear modifications including those in cold nuclear matter. In this paper, we present new measurements from the PHENIX 2007 data set of J/psi yields at forward rapidity (1.2<|y|<2.2) in Au+Au collisions at sqrt(s_NN)=200 GeV. The data confirm the earlier finding that the suppression of J/psi at forward rapidity is stronger than at midrapidity, while also extending the measurement to finer bins in collision centrality and higher transverse momentum (pT). We compare the experimental data to the most recent theoretical calculations that incorporate a variety of physics mechanisms including gluon saturation, gluon shadowing, initial-state parton energy loss, cold nuclear matter breakup, color screening, and charm recombination. We find J/psi suppression beyond cold-nuclear-matter effects. However, the current level of disagreement between models and d+Au data precludes using these models to quantify the hot-nuclear-matter suppression.

6 data tables

J/psi invariant yield in Au+Au collisions as a function of $N_{part}$ at forward rapidity ($p_{T}$ integrated). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

J/psi nuclear modification $R_{AA}$ in Au+Au collisions as a function of $N_{part}$ at forward rapidity ($p_T$ integrated). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

J/psi invariant yield in Au+Au collisions as a function of transverse momentum for the 0-20% centrality class at forward rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

More…

Neutral Pion Production in Au+Au Collisions at $\sqrt{s_{NN}}$ = 200 GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 80 (2009) 044905, 2009.
Inspire Record 825863 DOI 10.17182/hepdata.96845

The results of mid-rapidity ($0 < y < 0.8$) neutral pion spectra over an extended transverse momentum range ($1 < p_T < 12$ GeV/$c$) in $\sqrt{s_{NN}}$ = 200 GeV Au+Au collisions, measured by the STAR experiment, are presented. The neutral pions are reconstructed from photons measured either by the STAR Barrel Electro-Magnetic Calorimeter (BEMC) or by the Time Projection Chamber (TPC) via tracking of conversion electron-positron pairs. Our measurements are compared to previously published $\pi^{\pm}$ and $\pi^0$ results. The nuclear modification factors $R_{\mathrm{CP}}$ and $R_{\mathrm{AA}}$ of $\pi^0$ are also presented as a function of $p_T$ . In the most central Au+Au collisions, the binary collision scaled $\pi^0$ yield at high $p_T$ is suppressed by a factor of about 5 compared to the expectation from the yield of p+p collisions. Such a large suppression is in agreement with previous observations for light quark mesons and is consistent with the scenario that partons suffer considerable energy loss in the dense medium formed in central nucleus-nucleus collisions at RHIC.

20 data tables

The diphoton invariant mass distributions using the EMC-TPC method in 0-20% Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV.

The diphoton invariant mass distributions using the EMC-TPC method in 0-20% Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV.

The diphoton invariant mass distributions using the EMC-EMC method in 0-20% Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV.

More…