A Study of Energy-energy Correlations Between 12-{GeV} and 46.8-{GeV} {CM} Energies

The TASSO collaboration Braunschweig, W. ; Gerhards, R. ; Kirschfink, F.J. ; et al.
Z.Phys.C 36 (1987) 349-361, 1987.
Inspire Record 248660 DOI 10.17182/hepdata.1698

We present data on energy-energy correlations (EEC) and their related asymmetry (AEEC) ine+e− annihilation in the centre of mass energy range 12<W≦46.8 GeV. The energy and angular dependence of the EEC in the central region is well described byOαs2 QCD plus a fragmentation term proportional to\({1 \mathord{\left/ {\vphantom {1 {\sqrt s }}} \right. \kern-\nulldelimiterspace} {\sqrt s }}\). BareO(α)s2 QCD reproduces our data for the large angle region of the AEEC. Nonperturbative effects for the latter are estimated with the help of fragmentation models. From various analyses using different approximations, we find that values for\(\Lambda _{\overline {MS} } \) in the range 0.1–0.3 GeV give a good description of the data. We also compare analytical calculations in QCD for the EEC in the back-to-back region to our data. The theoretical predictions describe well both the angular and energy dependence of the data in the back-to-back region.

10 data tables

Correlation function binned in cos(chi).

Correlation function binned in cos(chi).

Correlation function binned in cos(chi).

More…

Measurements of Energy Correlations in $e^+ e^- \to$ Hadrons

The JADE collaboration Bartel, W. ; Becker, L. ; Bowdery, C. ; et al.
Z.Phys.C 25 (1984) 231, 1984.
Inspire Record 202784 DOI 10.17182/hepdata.1998

Energy-energy-correlations (EEC) have been measured with the JADE detector at c.m. energies of 14 GeV, 22 GeV and in the region 29 GeV<Ecm<36 GeV. Corrected results are presented of EEC and their asymmetry, which can be directly compared to theoretical predictions. At 〈Ecm〉=34 GeV a comparison with second order QCD predictions yields good agreement for the string model fragmentation resulting in a value of the strong coupling constant αs=0.165±0.01 (stat.). The independent fragmentation models, which yield values of αs between 0.10 and 0.15 depending on the treatment of energy and momentum conservation and of the gluon splitting, do not provide a satisfactory description of the data over the full angular range.

3 data tables

TABLES GIVEN HERE CONTAIN SELF CORRELATION. THIS IS SUBTRACTED IN THE FIGURE.

VALUE OF ASSYMETRY IN CORRELATIONS.

No description provided.


Comparison of e+ e- Annihilation with QCD and Determination of the Strong Coupling Constant

The TASSO collaboration Brandelik, R. ; Braunschweig, W. ; Gather, K. ; et al.
Phys.Lett.B 94 (1980) 437-443, 1980.
Inspire Record 153511 DOI 10.17182/hepdata.5489

We have analyzed 1113 events of the reaction e + e − → hadrons at CM energies of 12 and 30 GeV in order to make a detailed comparison with QCD. Perturbative effects can be well separated from effects depending on the quark and gluon fragmentation parameters to yield a reliable measurement of the coupling constant α S . At 30 GeV, the result is α S = 0.17 ± 0.02 (statistical) ± 0.03 (systematic). QCD model predictions, using the fragmentation parameters determined along with α S , agree with both gross properties of the final states and with detailed features of the three-jet states.

7 data tables

No description provided.

No description provided.

No description provided.

More…

Tests of Quantum Chromodynamics and a Direct Measurement of the Strong Coupling Constant $\alpha_S$ at $\sqrt{s}=30$-{GeV}

Barber, D.P. ; Becker, U. ; Benda, H. ; et al.
Phys.Lett.B 89 (1979) 139-144, 1979.
Inspire Record 143680 DOI 10.17182/hepdata.6483

We report the measurement of the reaction e + + e − → hadronic jets at a center-of-mass energy √ s =30 GeV using the MARK-J detector at PETRA. By measuring the energy and angular distribution of both neutrals and charged particles we were able to isolate unambiguously the three-jet events in a kinematic region where the backgrounds from q q and phase space contributions and other processes are small. Various comparisons of the data with quantum chromodynamics were made. The relative yield of three-jet events and the shape distribution of the events enable us to determine α s = 0.23 ± 0.02 (statistical error) with a systematic error of ± 0.04.

2 data tables

OBLATENESS AND THRUST DISTRIBUTIONS FOR NARROW AND BROAD JETS AT 30 GEV. THESE DATA ARE SOMEWHAT ANALYSIS AND DETECTOR DEPENDENT.

No description provided.


Energy-energy Correlations in $e^+ e^-$ Annihilation Into Hadrons

The PLUTO collaboration Berger, Christoph ; Genzel, H. ; Grigull, R. ; et al.
Phys.Lett.B 99 (1981) 292, 1981.
Inspire Record 156315 DOI 10.17182/hepdata.6228

Measurements of energy-energy correlations in hadronic final states produced in e + e − annihilation at c.m. energies between 7.7 and 31.6 GeV are presented. The data are compared to perturbative QCD predictions. Good qualitative agreement above 20 GeV c.m. energy is found. The importance of non-perturbative effects is discussed, as well as the detailed behaviour of the correlation near 180°.

6 data tables

No description provided.

OPPOSITE SIDE ENERGY-ENERGY CORRELATIONS NEAR 180 DEG.

ENERGY-ENERGY CORRELATION INTEGRATED IN THE REGION 60 TO 120 DEG.

More…

A Model Independent Second Order Determination of the Strong Coupling Constant $\alpha^- s$

Adeva, B. ; Barber, D.P. ; Becker, U. ; et al.
Phys.Rev.Lett. 50 (1983) 2051, 1983.
Inspire Record 189724 DOI 10.17182/hepdata.3086

With use of the MARK-J detector at s=34.7 GeV 21 000 e+e−→hadron events have been collected. By measurement of the asymmetry in angular energy correlations the strong coupling constant αs=0.13±0.01 (statistical)±0.02 (systematic) is determined, in complete second order, and independent of the fragmentation models and QCD cutoff values used.

2 data tables

DATA REQUESTED FROM THE AUTHORS.

No description provided.


Experimental Study of Electroweak Parameters at {PETRA} Energies (12-{GeV} $< E_{CMS} <$ 36.7-{GeV})

The MARK-J collaboration Barber, D.P. ; Becker, U. ; Bei, G.D. ; et al.
Phys.Rev.Lett. 46 (1981) 1663, 1981.
Inspire Record 164675 DOI 10.17182/hepdata.3303

We have performed a high-statistics measurement of Bhabha scattering and of the production of hadrons in electron-positron annihilation at PETRA energies (12 GeV<~s<~36.7 GeV). Combining the results with measurements of μ+μ− and τ+τ− production enables us to compare our results with electroweak theory. We find sin2θw=0.27±0.08. This is in good agreement with the value obtained from neutrino experiments which were carried out in entirely different kinematic regions.

5 data tables

No description provided.

No description provided.

ASYMMETRY WAS USED.

More…

The Influence of Fragmentation Models on the Determination of the Strong Coupling Constant in $e^+ e^-$ Annihilation Into Hadrons

The CELLO collaboration Behrend, H.J. ; Chen, C. ; Fenner, H. ; et al.
Nucl.Phys.B 218 (1983) 269-288, 1983.
Inspire Record 179447 DOI 10.17182/hepdata.8172

Hadronic events obtained with the CELLO detector at PETRA were compared with first-order QCD predictions using two different models for the fragmentation of quarks and gluons, the Hoyer model and the Lund model. Both models are in reasonable agreement with the data, although they do not completely reproduce the details of many distributions. Several methods have been applied to determine the strong coupling constant α S . Although within one model the value of α S varies by 20% among the different methods, the values determined using the Lund model are 30% or more larger (depending on the method used) than the values determined with the Hoyer model. Our results using the Hoyer model are in agreement with previous results based on this approach.

3 data tables

DATA CORRECTED WITH HOYER MODEL (ALPHA-S=0.15).

DATA CORRECTED WITH LUND MODEL (ALPHA-S=0.25).

No description provided.


On the Model Dependence of the Determination of the Strong Coupling Constant in Second Order {QCD} From $e^+ e^-$ Annihilation Into Hadrons

The CELLO collaboration Behrend, H.J. ; Fenner, H. ; Schachter, M.J. ; et al.
Phys.Lett.B 138 (1984) 311-316, 1984.
Inspire Record 195332 DOI 10.17182/hepdata.6634

Hadronic events obtained with the CELLO detector at PETRA are compared with second order QCD predictions using different models for the fragmentation of quarks and gluons into hadrons. We find that the model dependence in the determination of the strong coupling constant persists when going from first to second order QCD calculations.

3 data tables

ASYMMETRY FOR DATA CORRECTED WITH IF MODEL (ALPHA-S=0.12).

ASSYMETRY FOR DATA CORRECTED WITH SF MODEL (ALPHA-S=0.19).

No description provided.


Determination of alpha-s from energy-energy correlations measured on the Z0 resonance.

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 257 (1991) 469-478, 1991.
Inspire Record 324427 DOI 10.17182/hepdata.29467

We present a study of energy-energy correlations based on 83 000 hadronic Z 0 decays. From this data we determine the strong coupling constant α s to second order QCD: α s (91.2 GeV)=0.121±0.004(exp.)±0.002(hadr.) −0.006 +0.009 (scale)±0.006(theor.) from the energy-energy correlation and α s (91.2 GeV)=0.115±0.004(exp.) −0.004 +0.007 (hadr.) −0.000 +0.002 (scale) −0.005 +0.003 (theor.) from its asymmetry using a renormalization scale μ 1 =0.1 s . The first error (exp.) is the systematic experimental uncertainly, the statistical error is negligible. The other errors are due to hadronization (hadr.), renormalization scale (scale) uncertainties, and differences between the calculated second order corrections (theor.).

3 data tables

Statistical errors are equal to or less than 0.6 pct in each bin. There is also a 4 pct systematic uncertainty.

ALPHA_S from the EEC measurement.. The first error given is the experimental error which is mainly the overall systematic uncertainty: the first (DSYS) error is due to hadronization, the second to the renormalization scale, and the third differences between the calculated and second order corrections.

ALPHA_S from the AEEC measurement.. The first error given is the experimental error which is mainly the overall systematic uncertainty: the first (DSYS) error is due to hadronization, the second to the renormalization scale, and the third differences between the calculated and second order corrections.