Version 2
Search for Higgs boson decays into two new low-mass spin-0 particles in the 4$b$ channel with the ATLAS detector using $pp$ collisions at $\sqrt{s}= 13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.D 102 (2020) 112006, 2020.
Inspire Record 1797642 DOI 10.17182/hepdata.94383

This paper describes a search for beyond the Standard Model decays of the Higgs boson into a pair of new spin-0 particles subsequently decaying into $b$-quark pairs, $H \rightarrow aa \rightarrow (b\bar{b})(b\bar{b})$, using proton-proton collision data collected by the ATLAS detector at the Large Hadron Collider at center-of-mass energy $\sqrt{s}=13$ TeV. This search focuses on the regime where the decay products are collimated and in the range $15 \leq m_a \leq 30$ GeV and is complementary to a previous search in the same final state targeting the regime where the decay products are well separated and in the range $20 \leq m_a \leq 60$ GeV. A novel strategy for the identification of the $a \rightarrow b\bar{b}$ decays is deployed to enhance the efficiency for topologies with small separation angles. The search is performed with 36 fb$^{-1}$ of integrated luminosity collected in 2015 and 2016 and sets upper limits on the production cross-section of $H \rightarrow aa \rightarrow (b\bar{b})(b\bar{b})$, where the Higgs boson is produced in association with a $Z$ boson.

10 data tables

Summary of the 95% CL upper limits on $\sigma_{ZH} BR(H\rightarrow aa \rightarrow (b\bar{b})(b\bar{b}))$. Both observed and expected limits are listed. In the case of the expected limits, one- and two-standard-deviation uncertainty bands are also listed.

Summary of the 95% CL upper limits on $\sigma_{ZH} BR(H\rightarrow aa \rightarrow (b\bar{b})(b\bar{b}))$. Both observed and expected limits are listed. In the case of the expected limits, one- and two-standard-deviation uncertainty bands are also listed.

Summary of the observed 95% CL upper limits on $\sigma_{ZH} BR(H\rightarrow aa \rightarrow (b\bar{b})(b\bar{b}))$ for the resolved analysis.

More…

Performance of the missing transverse momentum triggers for the ATLAS detector during Run-2 data taking

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 08 (2020) 080, 2020.
Inspire Record 1796953 DOI 10.17182/hepdata.95967

The factor of four increase in the LHC luminosity, from $0.5\times 10^{34}\,\textrm{cm}^{-2}\textrm{s}^{-1}$ to $2.0\times 10^{34}\textrm{cm}^{-2}\textrm{s}^{-1}$, and the corresponding increase in pile-up collisions during the 2015-2018 data-taking period, presented a challenge for ATLAS to trigger on missing transverse momentum. The output data rate at fixed threshold typically increases exponentially with the number of pile-up collisions, so the legacy algorithms from previous LHC data-taking periods had to be tuned and new approaches developed to maintain the high trigger efficiency achieved in earlier operations. A study of the trigger performance and comparisons with simulations show that these changes resulted in event selection efficiencies of >98% for this period, meeting and in some cases exceeding the performance of similar triggers in earlier run periods, while at the same time keeping the necessary bandwidth within acceptable limits.

67 data tables

A comparison of the measured cell $E_T^{miss}$ distribution with that predicted by the two-component model for two pile-up scenarios. The magenta points extend the measured distribution using L1 $E_T^{miss} > 30\,$GeV and L1 $E_T^{miss} > 50\,$GeV data. The red curve is the prediction from the calorimeter-resolution part of the model. The green curve is the high $E_T^{miss}$ tail's probability distribution for the mean number of $pp$ interactions $\mu$ in each figure. The blue curve is the full model prediction computed by combining the $E_T^{miss}$ from these two individual sources shown in red and green, each calculated for $\mu=\langle\mu\rangle$. The black points show the unbiased $E_T^{miss}$ distribution measured in data. Corresponds to a prediction for $\langle\mu\rangle = 25$.

A comparison of the measured cell $E_T^{miss}$ distribution with that predicted by the two-component model for two pile-up scenarios. The magenta points extend the measured distribution using L1 $E_T^{miss} > 30\,$GeV and L1 $E_T^{miss} > 50\,$GeV data. The red curve is the prediction from the calorimeter-resolution part of the model. The green curve is the high $E_T^{miss}$ tail's probability distribution for the mean number of $pp$ interactions $\mu$ in each figure. The blue curve is the full model prediction computed by combining the $E_T^{miss}$ from these two individual sources shown in red and green, each calculated for $\mu=\langle\mu\rangle$. The black points show the unbiased $E_T^{miss}$ distribution measured in data. Corresponds to a prediction for $\langle\mu\rangle = 25$.

A comparison of the measured cell $E_T^{miss}$ distribution with that predicted by the two-component model for two pile-up scenarios. The magenta points extend the measured distribution using L1 $E_T^{miss} > 30\,$GeV and L1 $E_T^{miss} > 50\,$GeV data. The red curve is the prediction from the calorimeter-resolution part of the model. The green curve is the high $E_T^{miss}$ tail's probability distribution for the mean number of $pp$ interactions $\mu$ in each figure. The blue curve is the full model prediction computed by combining the $E_T^{miss}$ from these two individual sources shown in red and green, each calculated for $\mu=\langle\mu\rangle$. The black points show the unbiased $E_T^{miss}$ distribution measured in data. Corresponds to a prediction for $\langle\mu\rangle = 25$.

More…

Version 3
Measurements of production cross sections of WZ and same-sign WW boson pairs in association with two jets in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 809 (2020) 135710, 2020.
Inspire Record 1794169 DOI 10.17182/hepdata.94181

Measurements of production cross sections of WZ and same-sign WW boson pairs in association with two jets in proton-proton collisions at $\sqrt{s} =$ 13 TeV at the LHC are reported. The data sample corresponds to an integrated luminosity of 137 fb$^{-1}$, collected with the CMS detector during 2016-2018. The measurements are performed in the leptonic decay modes W$^\pm$Z $\to$ $\ell^\pm\nu\ell'^\pm\ell'^\mp$ and WW $\to$ $\ell^\pm\nu\ell'^\pm\nu$, where $\ell, \ell' = $ e, $\mu$. Differential fiducial cross sections as functions of the invariant masses of the jet and charged lepton pairs, as well as of the leading-lepton transverse momentum, are measured for WW production and are consistent with the standard model predictions. The dependence of differential cross sections on the invariant mass of the jet pair is also measured for WZ production. An observation of electroweak production of WZ boson pairs is reported with an observed (expected) significance of 6.8 (5.3) standard deviations. Constraints are obtained on the structure of quartic vector boson interactions in the framework of effective field theory.

60 data tables

Relative systematic uncertainties in the EW $W^\pm W^\pm$ and WZ cross section measurements in units of percent.

Relative systematic uncertainties in the EW $W^\pm W^\pm$ and WZ cross section measurements in units of percent.

Relative systematic uncertainties in the EW $W^\pm W^\pm$ and WZ cross section measurements in units of percent.

More…

Version 2
Search for a scalar partner of the top quark in the all-hadronic $t\bar{t}$ plus missing transverse momentum final state at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 80 (2020) 737, 2020.
Inspire Record 1793461 DOI 10.17182/hepdata.93906

A search for direct pair production of scalar partners of the top quark (top squarks or scalar third-generation up-type leptoquarks) in the all-hadronic $t\bar{t}$ plus missing transverse momentum final state is presented. The analysis of 139 fb$^{-1}$ of ${\sqrt{s}=13}$ TeV proton-proton collision data collected using the ATLAS detector at the LHC yields no significant excess over the Standard Model background expectation. To interpret the results, a supersymmetric model is used where the top squark decays via $\tilde{t} \to t^{(*)} \tilde{\chi}^0_1$, with $t^{(*)}$ denoting an on-shell (off-shell) top quark and $\tilde{\chi}^0_1$ the lightest neutralino. Three specific event selections are optimised for the following scenarios. In the scenario where $m_{\tilde{t}}> m_t+m_{\tilde{\chi}^0_1}$, top squark masses are excluded in the range 400-1250 GeV for $\tilde{\chi}^0_1$ masses below $200$ GeV at 95 % confidence level. In the situation where $m_{\tilde{t}}\sim m_t+m_{\tilde{\chi}^0_1}$, top squark masses in the range 300-630 GeV are excluded, while in the case where $m_{\tilde{t}}< m_W+m_b+m_{\tilde{\chi}^0_1}$ (with $m_{\tilde{t}}-m_{\tilde{\chi}^0_1}\ge 5$ GeV), considered for the first time in an ATLAS all-hadronic search, top squark masses in the range 300-660 GeV are excluded. Limits are also set for scalar third-generation up-type leptoquarks, excluding leptoquarks with masses below $1240$ GeV when considering only leptoquark decays into a top quark and a neutrino.

118 data tables

<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <br><br> <b>Exclusion contours:</b> <ul> <li><a href="?table=stop_obs">Stop exclusion contour (Obs.)</a> <li><a href="?table=stop_obs_down">Stop exclusion contour (Obs. Down)</a> <li><a href="?table=stop_obs_up">Stop exclusion contour (Obs. Up)</a> <li><a href="?table=stop_exp">Stop exclusion contour (Exp.)</a> <li><a href="?table=stop_exp_down">Stop exclusion contour (Exp. Down)</a> <li><a href="?table=stop_exp_up">Stop exclusion contour (Exp. Up)</a> <li><a href="?table=LQ3u_obs">LQ3u exclusion contour (Obs.)</a> <li><a href="?table=LQ3u_obs_down">LQ3u exclusion contour (Obs. Down)</a> <li><a href="?table=LQ3u_obs_up">LQ3u exclusion contour (Obs. Up)</a> <li><a href="?table=LQ3u_exp">LQ3u exclusion contour (Exp.)</a> <li><a href="?table=LQ3u_exp_down">LQ3u exclusion contour (Exp. Down)</a> <li><a href="?table=LQ3u_exp_up">LQ3u exclusion contour (Exp. Up)</a> </ul> <b>Upper limits:</b> <ul> <li><a href="?table=stop_xSecUpperLimit_obs">stop_xSecUpperLimit_obs</a> <li><a href="?table=stop_xSecUpperLimit_exp">stop_xSecUpperLimit_exp</a> <li><a href="?table=LQ3u_xSecUpperLimit_obs">LQ3u_xSecUpperLimit_obs</a> <li><a href="?table=LQ3u_xSecUpperLimit_exp">LQ3u_xSecUpperLimit_exp</a> </ul> <b>Kinematic distributions:</b> <ul> <li><a href="?table=SRATW_metsigST">SRATW_metsigST</a> <li><a href="?table=SRBTT_m_1fatjet_kt12">SRBTT_m_1fatjet_kt12</a> <li><a href="?table=SRC_RISR">SRC_RISR</a> <li><a href="?table=SRD0_htSig">SRD0_htSig</a> <li><a href="?table=SRD1_htSig">SRD1_htSig</a> <li><a href="?table=SRD2_htSig">SRD2_htSig</a> </ul> <b>Cut flows:</b> <ul> <li><a href="?table=cutflow_SRATT">cutflow_SRATT</a> <li><a href="?table=cutflow_SRATW">cutflow_SRATW</a> <li><a href="?table=cutflow_SRAT0">cutflow_SRAT0</a> <li><a href="?table=cutflow_SRB">cutflow_SRB</a> <li><a href="?table=cutflow_SRC">cutflow_SRC</a> <li><a href="?table=cutflow_SRD0">cutflow_SRD0</a> <li><a href="?table=cutflow_SRD1">cutflow_SRD1</a> <li><a href="?table=cutflow_SRD2">cutflow_SRD2</a> </ul> <b>Acceptance and efficiencies:</b> As explained in <a href="https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults#summary_of_auxiliary_material">the twiki</a>. <ul> <li> <b>SRATT:</b> <a href="?table=Acc_SRATT">Acc_SRATT</a> <a href="?table=Eff_SRATT">Eff_SRATT</a> <li> <b>SRATW:</b> <a href="?table=Acc_SRATW">Acc_SRATW</a> <a href="?table=Eff_SRATW">Eff_SRATW</a> <li> <b>SRAT0:</b> <a href="?table=Acc_SRAT0">Acc_SRAT0</a> <a href="?table=Eff_SRAT0">Eff_SRAT0</a> <li> <b>SRBTT:</b> <a href="?table=Acc_SRBTT">Acc_SRBTT</a> <a href="?table=Eff_SRBTT">Eff_SRBTT</a> <li> <b>SRBTW:</b> <a href="?table=Acc_SRBTW">Acc_SRBTW</a> <a href="?table=Eff_SRBTW">Eff_SRBTW</a> <li> <b>SRBT0:</b> <a href="?table=Acc_SRBT0">Acc_SRBT0</a> <a href="?table=Eff_SRBT0">Eff_SRBT0</a> <li> <b>SRC1:</b> <a href="?table=Acc_SRC1">Acc_SRC1</a> <a href="?table=Eff_SRC1">Eff_SRC1</a> <li> <b>SRC2:</b> <a href="?table=Acc_SRC2">Acc_SRC2</a> <a href="?table=Eff_SRC2">Eff_SRC2</a> <li> <b>SRC3:</b> <a href="?table=Acc_SRC3">Acc_SRC3</a> <a href="?table=Eff_SRC3">Eff_SRC3</a> <li> <b>SRC4:</b> <a href="?table=Acc_SRC4">Acc_SRC4</a> <a href="?table=Eff_SRC4">Eff_SRC4</a> <li> <b>SRC5:</b> <a href="?table=Acc_SRC5">Acc_SRC5</a> <a href="?table=Eff_SRC5">Eff_SRC5</a> <li> <b>SRD0:</b> <a href="?table=Acc_SRD0">Acc_SRD0</a> <a href="?table=Eff_SRD0">Eff_SRD0</a> <li> <b>SRD1:</b> <a href="?table=Acc_SRD1">Acc_SRD1</a> <a href="?table=Eff_SRD1">Eff_SRD1</a> <li> <b>SRD2:</b> <a href="?table=Acc_SRD2">Acc_SRD2</a> <a href="?table=Eff_SRD2">Eff_SRD2</a> </ul> <b>Truth Code snippets</b> and <b>SLHA</a> files are available under "Resources" (purple button on the left)

<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <br><br> <b>Exclusion contours:</b> <ul> <li><a href="?table=stop_obs">Stop exclusion contour (Obs.)</a> <li><a href="?table=stop_obs_down">Stop exclusion contour (Obs. Down)</a> <li><a href="?table=stop_obs_up">Stop exclusion contour (Obs. Up)</a> <li><a href="?table=stop_exp">Stop exclusion contour (Exp.)</a> <li><a href="?table=stop_exp_down">Stop exclusion contour (Exp. Down)</a> <li><a href="?table=stop_exp_up">Stop exclusion contour (Exp. Up)</a> <li><a href="?table=LQ3u_obs">LQ3u exclusion contour (Obs.)</a> <li><a href="?table=LQ3u_obs_down">LQ3u exclusion contour (Obs. Down)</a> <li><a href="?table=LQ3u_obs_up">LQ3u exclusion contour (Obs. Up)</a> <li><a href="?table=LQ3u_exp">LQ3u exclusion contour (Exp.)</a> <li><a href="?table=LQ3u_exp_down">LQ3u exclusion contour (Exp. Down)</a> <li><a href="?table=LQ3u_exp_up">LQ3u exclusion contour (Exp. Up)</a> </ul> <b>Upper limits:</b> <ul> <li><a href="?table=stop_xSecUpperLimit_obs">stop_xSecUpperLimit_obs</a> <li><a href="?table=stop_xSecUpperLimit_exp">stop_xSecUpperLimit_exp</a> <li><a href="?table=LQ3u_xSecUpperLimit_obs">LQ3u_xSecUpperLimit_obs</a> <li><a href="?table=LQ3u_xSecUpperLimit_exp">LQ3u_xSecUpperLimit_exp</a> </ul> <b>Kinematic distributions:</b> <ul> <li><a href="?table=SRATW_metsigST">SRATW_metsigST</a> <li><a href="?table=SRBTT_m_1fatjet_kt12">SRBTT_m_1fatjet_kt12</a> <li><a href="?table=SRC_RISR">SRC_RISR</a> <li><a href="?table=SRD0_htSig">SRD0_htSig</a> <li><a href="?table=SRD1_htSig">SRD1_htSig</a> <li><a href="?table=SRD2_htSig">SRD2_htSig</a> </ul> <b>Cut flows:</b> <ul> <li><a href="?table=cutflow_SRATT">cutflow_SRATT</a> <li><a href="?table=cutflow_SRATW">cutflow_SRATW</a> <li><a href="?table=cutflow_SRAT0">cutflow_SRAT0</a> <li><a href="?table=cutflow_SRB">cutflow_SRB</a> <li><a href="?table=cutflow_SRC">cutflow_SRC</a> <li><a href="?table=cutflow_SRD0">cutflow_SRD0</a> <li><a href="?table=cutflow_SRD1">cutflow_SRD1</a> <li><a href="?table=cutflow_SRD2">cutflow_SRD2</a> </ul> <b>Acceptance and efficiencies:</b> As explained in <a href="https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults#summary_of_auxiliary_material">the twiki</a>. <ul> <li> <b>SRATT:</b> <a href="?table=Acc_SRATT">Acc_SRATT</a> <a href="?table=Eff_SRATT">Eff_SRATT</a> <li> <b>SRATW:</b> <a href="?table=Acc_SRATW">Acc_SRATW</a> <a href="?table=Eff_SRATW">Eff_SRATW</a> <li> <b>SRAT0:</b> <a href="?table=Acc_SRAT0">Acc_SRAT0</a> <a href="?table=Eff_SRAT0">Eff_SRAT0</a> <li> <b>SRBTT:</b> <a href="?table=Acc_SRBTT">Acc_SRBTT</a> <a href="?table=Eff_SRBTT">Eff_SRBTT</a> <li> <b>SRBTW:</b> <a href="?table=Acc_SRBTW">Acc_SRBTW</a> <a href="?table=Eff_SRBTW">Eff_SRBTW</a> <li> <b>SRBT0:</b> <a href="?table=Acc_SRBT0">Acc_SRBT0</a> <a href="?table=Eff_SRBT0">Eff_SRBT0</a> <li> <b>SRC1:</b> <a href="?table=Acc_SRC1">Acc_SRC1</a> <a href="?table=Eff_SRC1">Eff_SRC1</a> <li> <b>SRC2:</b> <a href="?table=Acc_SRC2">Acc_SRC2</a> <a href="?table=Eff_SRC2">Eff_SRC2</a> <li> <b>SRC3:</b> <a href="?table=Acc_SRC3">Acc_SRC3</a> <a href="?table=Eff_SRC3">Eff_SRC3</a> <li> <b>SRC4:</b> <a href="?table=Acc_SRC4">Acc_SRC4</a> <a href="?table=Eff_SRC4">Eff_SRC4</a> <li> <b>SRC5:</b> <a href="?table=Acc_SRC5">Acc_SRC5</a> <a href="?table=Eff_SRC5">Eff_SRC5</a> <li> <b>SRD0:</b> <a href="?table=Acc_SRD0">Acc_SRD0</a> <a href="?table=Eff_SRD0">Eff_SRD0</a> <li> <b>SRD1:</b> <a href="?table=Acc_SRD1">Acc_SRD1</a> <a href="?table=Eff_SRD1">Eff_SRD1</a> <li> <b>SRD2:</b> <a href="?table=Acc_SRD2">Acc_SRD2</a> <a href="?table=Eff_SRD2">Eff_SRD2</a> </ul> <b>Truth Code snippets</b> and <b>SLHA</a> files are available under "Resources" (purple button on the left)

The observed exclusion contour at 95% CL as a function of the $\it{m}_{\tilde{\chi}^{0}_{1}}$ vs. $\it{m}_{\tilde{t}}$. Masses that are within the contours are excluded.

More…

Measurement of CKM matrix elements in single top quark $t$-channel production in proton-proton collisions at $\sqrt{s} = $ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 808 (2020) 135609, 2020.
Inspire Record 1792999 DOI 10.17182/hepdata.95117

The first direct, model-independent measurement is presented of the modulus of the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements $|V_\mathrm{tb}|$, $|V_\mathrm{td}|$, and $|V_\mathrm{ts}|$, in final states enriched in single top quark $t$-channel events. The analysis uses proton-proton collision data from the LHC, collected during 2016 by the CMS experiment, at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. Processes directly sensitive to these matrix elements are considered at both the production and decay vertices of the top quark. In the standard model hypothesis of CKM unitarity, a lower limit of $|V_\mathrm{tb}|$ $>$ 0.970 is measured at the 95% confidence level. Several theories beyond the standard model are considered, and by releasing all constraints among the involved parameters, the values $|V_\mathrm{tb}| =$ 0.988 $\pm$ 0.024, and $|V_\mathrm{td}|^2 + |V_\mathrm{ts}|^2 =$ 0.06 $\pm$ 0.06, where the uncertainties include both statistical and systematic components, are measured.

29 data tables

The $m_{W}^{T}$ distribution from data (points) and simulation (shaded histograms) in the 2j1t (left) and 3j1t (right) categories for the muon (upper) and electron (lower) channels. The vertical lines on the points and the hatched bands show the experimental and MC statistical uncertainties, respectively. The expected distribution from the STq,b+STb,q processes (multiplied by a factor of 1000) is shown by the solid blue line. The lower panels show the ratio of the data to the MC prediction.

The $m_{W}^{T}$ distribution from data (points) and simulation (shaded histograms) in the 2j1t (left) and 3j1t (right) categories for the muon (upper) and electron (lower) channels. The vertical lines on the points and the hatched bands show the experimental and MC statistical uncertainties, respectively. The expected distribution from the STq,b+STb,q processes (multiplied by a factor of 1000) is shown by the solid blue line. The lower panels show the ratio of the data to the MC prediction.

The $m_{W}^{T}$ distribution from data (points) and simulation (shaded histograms) in the 2j1t (left) and 3j1t (right) categories for the muon (upper) and electron (lower) channels. The vertical lines on the points and the hatched bands show the experimental and MC statistical uncertainties, respectively. The expected distribution from the STq,b+STb,q processes (multiplied by a factor of 1000) is shown by the solid blue line. The lower panels show the ratio of the data to the MC prediction.

More…

Version 2
Search for long-lived, massive particles in events with a displaced vertex and a muon with large impact parameter in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.D 102 (2020) 032006, 2020.
Inspire Record 1788448 DOI 10.17182/hepdata.91760

A search for long-lived particles decaying into hadrons and at least one muon is presented. The analysis selects events that pass a muon or missing-transverse-momentum trigger and contain a displaced muon track and a displaced vertex. The analyzed dataset of proton-proton collisions at $\sqrt{s} = 13$ TeV was collected with the ATLAS detector and corresponds to 136 fb$^{-1}$. The search employs dedicated reconstruction techniques that significantly increase the sensitivity to long-lived particle decays that occur in the ATLAS inner detector. Background estimates for Standard Model processes and instrumental effects are extracted from data. The observed event yields are compatible with those expected from background processes. The results are presented as limits at 95% confidence level on model-independent cross sections for processes beyond the Standard Model, and interpreted as exclusion limits in scenarios with pair-production of long-lived top squarks that decay via a small $R$-parity-violating coupling into a quark and a muon. Top squarks with masses up to 1.7 TeV are excluded for a lifetime of 0.1 ns, and masses below 1.3 TeV are excluded for lifetimes between 0.01 ns and 30 ns.

44 data tables

Vertex selection acceptance for the $\tilde{t}$ $R$-hadron benchmark model as a function of the transverse decay distance $r_{DV}$.

Vertex selection acceptance for the $\tilde{t}$ $R$-hadron benchmark model as a function of the transverse decay distance $r_{DV}$.

Vertex selection efficiency for the $\tilde{t}$ $R$-hadron benchmark model as a function of the transverse decay distance $r_{DV}$.

More…

Version 4
Search for heavy Higgs bosons decaying into two tau leptons with the ATLAS detector using $pp$ collisions at $\sqrt{s}=13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.Lett. 125 (2020) 051801, 2020.
Inspire Record 1782650 DOI 10.17182/hepdata.93071

A search for heavy neutral Higgs bosons is performed using the LHC Run 2 data, corresponding to an integrated luminosity of 139 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV recorded with the ATLAS detector. The search for heavy resonances is performed over the mass range 0.2-2.5 TeV for the $\tau^+\tau^-$ decay with at least one $\tau$-lepton decaying into final states with hadrons. The data are in good agreement with the background prediction of the Standard Model. In the $M_{h}^{125}$ scenario of the Minimal Supersymmetric Standard Model, values of $\tan\beta>8$ and $\tan\beta>21$ are excluded at the 95% confidence level for neutral Higgs boson masses of 1.0 TeV and 1.5 TeV, respectively, where $\tan\beta$ is the ratio of the vacuum expectation values of the two Higgs doublets.

216 data tables

Observed and predicted mTtot distribution in the b-veto category of the 1l1tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table.The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.

Observed and predicted mTtot distribution in the b-veto category of the 1l1tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table.The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.

Observed and predicted mTtot distribution in the b-veto category of the 1l1tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table.The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.

More…

Proton number fluctuations in $\sqrt{s_{NN}}$ = 2.4 GeV Au+Au collisions studied with HADES

The HADES collaboration Adamczewski-Musch, J. ; Arnold, O. ; Behnke, C. ; et al.
Phys.Rev.C 102 (2020) 024914, 2020.
Inspire Record 1781493 DOI 10.17182/hepdata.96305

We present an analysis of proton number fluctuations in $\sqrt{s_{NN}}$ = 2.4 GeV Au+Au collisions measured with the High-Acceptance DiElectron Spectrometer (HADES) at GSI. With the help of extensive detector simulations done with IQMD transport model events including nuclear clusters, various nuisance effects influencing the observed proton cumulants have been investigated. Acceptance and efficiency corrections have been applied as a function of fine grained rapidity and transverse momentum bins, as well as considering local track density dependencies. Next, the effects of volume changes within particular centrality selections have been considered and beyond-leading-order corrections have been applied to the data. The efficiency and volume corrected proton number moments and cumulants Kn of orders n = 1, . . . , 4 have been obtained as a function of centrality and phase-space bin, as well as the corresponding correlators C_n . We find that the observed correlators show a power-law scaling with the mean number of protons, i.e. $C_n \propto <N>^n$, indicative of mostly long-range multi-particle correlations in momentum space. We also present a comparison of our results with Au+Au collision data obtained at RHIC at similar centralities, but higher $\sqrt{s_{NN}}$.

20 data tables

$N_{part}$ distributions in Au+Au collisions for 8 centrality bins obtained from rescaled and modified $N_{hit}$ distributions (solid lines in Fig. 21b)

Efficiency and N2LO volume-corrected proton cumulant ratio $K_2/K_1$ plotted as a function of the rapidity acceptance

Efficiency and N2LO volume-corrected proton cumulant ratio $K_3/K_2$ plotted as a function of the rapidity acceptance

More…

Version 2
Search for direct stau production in events with two hadronic $\tau$-leptons in $\sqrt{s} = 13$ TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.D 101 (2020) 032009, 2020.
Inspire Record 1765529 DOI 10.17182/hepdata.92006

A search for the direct production of the supersymmetric partners of $\tau$-leptons (staus) in final states with two hadronically decaying $\tau$-leptons is presented. The analysis uses a dataset of $pp$ collisions corresponding to an integrated luminosity of $139$ fb$^{-1}$, recorded with the ATLAS detector at the Large Hadron Collider at a center-of-mass energy of 13 TeV. No significant deviation from the expected Standard Model background is observed. Limits are derived in scenarios of direct production of stau pairs with each stau decaying into the stable lightest neutralino and one $\tau$-lepton in simplified models where the two stau mass eigenstates are degenerate. Stau masses from 120 GeV to 390 GeV are excluded at 95% confidence level for a massless lightest neutralino.

52 data tables

The observed upper limits on the model cross-section in units of pb for simplified models with combined ${\tilde{\tau}}^{+}_{R,L} {\tilde{\tau}}^{-}_{R,L}$ production. Three points at ${M({\tilde{\chi}}^{0}_{1})}=200GeV$ were removed from the plot but kept in the table because they overlapped with the plot's legend and are far from the exclusion contour.

The observed upper limits on the model cross-section in units of pb for simplified models with combined ${\tilde{\tau}}^{+}_{R,L} {\tilde{\tau}}^{-}_{R,L}$ production. Three points at ${M({\tilde{\chi}}^{0}_{1})}=200GeV$ were removed from the plot but kept in the table because they overlapped with the plot's legend and are far from the exclusion contour.

The observed upper limits on the model cross-section in units of pb for simplified models with ${\tilde{\tau}}_L {\tilde{\tau}}_L$ only production. Three points at $M({\tilde{\chi}}^{0}_{1})=200GeV$ were removed from the plot but kept in the table because they overlapped with the plot's legend and are far from the exclusion contour.

More…

Search for physics beyond the standard model in multilepton final states in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 03 (2020) 051, 2020.
Inspire Record 1764474 DOI 10.17182/hepdata.91969

A search for physics beyond the standard model in events with at least three charged leptons (electrons or muons) is presented. The data sample corresponds to an integrated luminosity of 137 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} =$ 13 TeV, collected with the CMS detector at the LHC in 2016-2018. The two targeted signal processes are pair production of type-III seesaw heavy fermions and production of a light scalar or pseudoscalar boson in association with a pair of top quarks. The heavy fermions may be manifested as an excess of events with large values of leptonic transverse momenta or missing transverse momentum. The light scalars or pseudoscalars may create a localized excess in the dilepton mass spectra. The results exclude heavy fermions of the type-III seesaw model for masses below 880 GeV at 95% confidence level in the scenario of equal branching fractions to each lepton flavor. This is the most restrictive limit on the flavor-democratic scenario of the type-III seesaw model to date. Assuming a Yukawa coupling of unit strength to top quarks, branching fractions of new scalar (pseudoscalar) bosons to dielectrons or dimuons above 0.004 (0.03) and 0.04 (0.03) are excluded at 95% confidence level for masses in the range 15-75 and 108-340 GeV, respectively. These are the first limits in these channels on an extension of the standard model with scalar or pseudoscalar particles.

58 data tables

The $M_{T}$ distribution in the WZ-enriched region. The last bin contains the overflow events.

The $L_{T}$ distribution in the ttZ-enriched region. The last bin contains the overflow events.

The $S_{T}$ distribution in the ZZ-enriched region. The last bin contains the overflow events.

More…