Multiplicity and transverse momentum evolution of charge-dependent correlations in pp, p-Pb, and Pb-Pb collisions at the LHC

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Eur.Phys.J.C 76 (2016) 86, 2016.
Inspire Record 1394672 DOI 10.17182/hepdata.72546

We report on two-particle charge-dependent correlations in pp, p-Pb, and Pb-Pb collisions as a function of the pseudorapidity and azimuthal angle difference, $\mathrm{\Delta}\eta$ and $\mathrm{\Delta}\varphi$ respectively. These correlations are studied using the balance function that probes the charge creation time and the development of collectivity in the produced system. The dependence of the balance function on the event multiplicity as well as on the trigger and associated particle transverse momentum ($p_{\mathrm{T}}$) in pp, p-Pb, and Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 7$, 5.02, and 2.76 TeV, respectively, are presented. In the low transverse momentum region, for $0.2 < p_{\mathrm{T}} < 2.0$ GeV/$c$, the balance function becomes narrower in both $\mathrm{\Delta}\eta$ and $\mathrm{\Delta}\varphi$ directions in all three systems for events with higher multiplicity. The experimental findings favor models that either incorporate some collective behavior (e.g. AMPT) or different mechanisms that lead to effects that resemble collective behavior (e.g. PYTHIA8 with color reconnection). For higher values of transverse momenta the balance function becomes even narrower but exhibits no multiplicity dependence, indicating that the observed narrowing with increasing multiplicity at low $p_{\mathrm{T}}$ is a feature of bulk particle production.

79 data tables

Balance function in $\Delta\eta$ 0_5%.

Balance function in $\Delta\eta$ 30_40%.

Balance function in $\Delta\eta$ 70_80%.

More…

Direct photon production in Pb-Pb collisions at $\sqrt{s_\rm{NN}}$ = 2.76 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Lett.B 754 (2016) 235-248, 2015.
Inspire Record 1394677 DOI 10.17182/hepdata.73093

Direct photon production at mid-rapidity in Pb-Pb collisions at $\sqrt{s_{_{\mathrm{NN}}}} = 2.76$ TeV was studied in the transverse momentum range $0.9 < p_\mathrm{T} < 14$ GeV$/c$. Photons were detected with the highly segmented electromagnetic calorimeter PHOS and via conversions in the ALICE detector material with the $e^+e^-$ pair reconstructed in the central tracking system. The results of the two methods were combined and direct photon spectra were measured for the 0-20%, 20-40%, and 40-80% centrality classes. For all three classes, agreement was found with perturbative QCD calculations for $p_\mathrm{T} \gtrsim 5$ GeV$/c$. Direct photon spectra down to $p_\mathrm{T} \approx 1$ GeV$/c$ could be extracted for the 20-40% and 0-20% centrality classes. The significance of the direct photon signal for $0.9 < p_\mathrm{T} < 2.1$ GeV$/c$ is $2.6\sigma$ for the 0-20% class. The spectrum in this $p_\mathrm{T}$ range and centrality class can be described by an exponential with an inverse slope parameter of $(297 \pm 12^\mathrm{stat}\pm 41^\mathrm{syst})$ MeV. State-of-the-art models for photon production in heavy-ion collisions agree with the data within uncertainties.

9 data tables

Invariant differential yields of direct GAMMA produced in 0-20% central inelastic PbPb collisions at center-of-mass energy per nucleon 2.76 TeV.

Invariant differential yields of direct GAMMA produced in 20-40% central inelastic PbPb collisions at center-of-mass energy per nucleon 2.76 TeV. The quoted upper limits correspond to a 95% confidence level.

Invariant differential yields of direct GAMMA produced in 40-80% central inelastic PbPb collisions at center-of-mass energy per nucleon 2.76 TeV. The quoted upper limits correspond to a 95% confidence level.

More…

Centrality evolution of the charged-particle pseudorapidity density over a broad pseudorapidity range in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Lett.B 754 (2016) 373-385, 2015.
Inspire Record 1394676 DOI 10.17182/hepdata.70834

The centrality dependence of the charged-particle pseudorapidity density measured with ALICE in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ over a broad pseudorapidity range is presented. This Letter extends the previous results reported by ALICE to more peripheral collisions. No strong change of the charged-particle pseudorapidity density distributions with centrality is observed, and when normalised to the number of participating nucleons in the collisions, the evolution over pseudorapidity with centrality is likewise small. The broad pseudorapidity range allows precise estimates of the total number of produced charged particles which we find to range from $162\pm22$ (syst.) to $17170\pm770$ (syst.) in 80-90% and 0-5 central collisions, respectively. The total charged-particle multiplicity is seen to approximately scale with the number of participating nucleons in the collision. This suggests that hard contributions to the charged-particle multiplicity are limited. The results are compared to models which describe $\mbox{d}N_{\mbox{ch}}/\mbox{d}\eta$ at mid-rapidity in the most central Pb-Pb collisions and it is found that these models do not capture all features of the distributions.

4 data tables

Measurement of $\mbox{d}N_{\mbox{ch}}/\mbox{d}\eta$ for all centralities and a broad $\eta$ range. Combined and symmetrised $\mbox{d}N_{\mbox{ch}}/\mbox{d}\eta$ over 30-90 PCT centrality from both SPD and FMD. Previously published results for 0-30 PCT over the full pseudorapidity range available elsewhere [PLB726.610]. Please note the systematic uncertainty from the centrality determination is encoded as a qualifier in the table header.

Full--width half--maximum of the charged--particle pseudorapidity distributions versus the average number of participants. The uncertainties on the ALICE measurements are from the fit of $f_{\text{GG}}$ only and evaluated at $95\%$ confidence level.

The charged--particle pseudorapidity density distributions scaled by the average number of participants in various pseudorapidity intervals as a function of the number of participants. Data for the 0 to 30 PCT most central events, and in ETARAP < 0.5 is available in previously published results [PLB726.610,PRC88.044910]. The uncertainties on $\left\langle N_{\text{part}}\right\rangle$ from the Glauber calculations not included (see [PRC88.044910]).

More…

Transverse momentum dependence of D-meson production in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
JHEP 03 (2016) 081, 2016.
Inspire Record 1394580 DOI 10.17182/hepdata.72510

The production of prompt charmed mesons D$^0$, D$^+$ and D$^{*+}$, and their antiparticles, was measured with the ALICE detector in Pb-Pb collisions at the centre-of-mass energy per nucleon pair, $\sqrt{s_{\rm NN}}$, of 2.76 TeV. The production yields for rapidity $|y|<0.5$ are presented as a function of transverse momentum, $p_{\rm T}$, in the interval 1-36 GeV/$c$ for the centrality class 0-10% and in the interval 1-16 GeV/$c$ for the centrality class 30-50%. The nuclear modification factor $R_{\rm AA}$ was computed using a proton-proton reference at $\sqrt{s} = 2.76$ TeV, based on measurements at $\sqrt{s} = 7$ TeV and on theoretical calculations. A maximum suppression by a factor of 5-6 with respect to binary-scaled pp yields is observed for the most central collisions at $p_{\rm T}$ of about 10 GeV/$c$. A suppression by a factor of about 2-3 persists at the highest $p_{\rm T}$ covered by the measurements. At low $p_{\rm T}$ (1-3 GeV/$c$), the $R_{\rm AA}$ has large uncertainties that span the range 0.35 (factor of about 3 suppression) to 1 (no suppression). In all $p_{\rm T}$ intervals, the $R_{\rm AA}$ is larger in the 30-50% centrality class compared to central collisions. The D-meson $R_{\rm AA}$ is also compared with that of charged pions and, at large $p_{\rm T}$, charged hadrons, and with model calculations.

17 data tables

$p_{\rm T}$-differential yield of prompt ${\rm D}^{0}$ mesons in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76~{\rm TeV}$ in the centrality class 0-10% in the rapidity interval |y|<0.5. Branching ratio of ${\rm D}^{0}$->${\rm K}^{0}\pi^{+}$ : 0.0388. The second (sys) error is the systematic uncertainty from the B feed-down contribution. The first (sys) error is the systematic uncertainty from the other sources.

$p_{\rm T}$-differential yield of prompt ${\rm D}^{+}$ mesons in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76~{\rm TeV}$ in the centrality class 0-10% in the rapidity interval |y|<0.5. Branching ratio of ${\rm D}^{+}$->${\rm K}^{-}\pi^{+}\pi^{+}$ : 0.0913. The second (sys) error is the systematic uncertainty from the B feed-down contribution. The first (sys) error is the systematic uncertainty from the other sources.

$p_{\rm T}$-differential yield of prompt ${\rm D}^{*+}$ mesons in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76~{\rm TeV}$ in the centrality class 0-10% in the rapidity interval |y|<0.5. Branching ratio of ${\rm D}^{*+}$->${\rm D}^{0}\pi^{+}$->${\rm K}^{-}\pi^{+}\pi^{+}$ : 0.0388*0.677. The second (sys) error is the systematic uncertainty from the B feed-down contribution. The first (sys) error is the systematic uncertainty from the other sources.

More…

Search for direct scalar top pair production in final states with two tau leptons in $pp$ collisions at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 76 (2016) 81, 2016.
Inspire Record 1393662 DOI 10.17182/hepdata.69768

A search for direct pair production of the supersymmetric partner of the top quark, decaying via a scalar tau to a nearly massless gravitino, has been performed using 20 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}=8$ TeV. The data were collected by the ATLAS experiment at the LHC in 2012. Top squark candidates are searched for in events with either two hadronically decaying tau leptons, one hadronically decaying tau and one light lepton, or two light leptons. No significant excess over the Standard Model expectation is found. Exclusion limits at 95% confidence level are set as a function of the top squark and scalar tau masses. Depending on the scalar tau mass, ranging from the 87 GeV LEP limit to the top squark mass, lower limits between 490 GeV and 650 GeV are placed on the top squark mass within the model considered.

11 data tables

Distribution of $m_{\rm T}^{\rm sum}(\tau_{\mathrm{had}},\tau_{\mathrm{had}})$ for the events passing all the hadron-hadron signal region requirements, except that on the variable itself. The SM background process have been normalised using a fit to the data observed in CRs.

Distribution of $m_{{\rm T}2}(\tau_{\mathrm{had}},\tau_{\mathrm{had}})$ for the events passing all the hadron-hadron signal region requirements, except that on the variable itself. The SM background process have been normalised using a fit to the data observed in CRs.

Distribution of $m_{{\rm T}2}(b \ell, b \tau_{\mathrm{had}})$ for events passing all the lepton-hadron LM signal region requirements, except that on the variable itself. The SM background process have been normalised using a fit to the data observed in CRs.

More…

Measurement of the top quark mass using proton-proton data at ${\sqrt{(s)}}$ = 7 and 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 93 (2016) 072004, 2016.
Inspire Record 1393269 DOI 10.17182/hepdata.71988

A new set of measurements of the top quark mass are presented, based on the proton-proton data recorded by the CMS experiment at the LHC at sqrt(s) = 8 TeV corresponding to a luminosity of 19.7 inverse femtobarns. The top quark mass is measured using the lepton + jets, all-jets and dilepton decay channels, giving values of 172.35 +/- 0.16 (stat) +/- 0.48 (syst) GeV, 172.32 +/- 0.25 (stat) +/- 0.59 (syst) GeV, and 172.82 +/- 0.19 (stat) +/- 1.22 (syst) GeV, respectively. When combined with the published CMS results at sqrt(s) = 7 TeV, they provide a top quark mass measurement of 172.44 +/- 0.13 (stat) +/- 0.47 (syst) GeV. The top quark mass is also studied as a function of the event kinematical properties in the lepton + jets decay channel. No indications of a kinematic bias are observed and the collision data are consistent with a range of predictions from current theoretical models of t t-bar production.

9 data tables

Measurement of $m_{t}$ as a function of the transverse momentum of the hadronically decaying top quark.

Measurement of $m_{t}$ as a function of the invariant mass of the tt¯ system.

Measurement of $m_{t}$ as a function of the transverse momentum of the tt¯ system.

More…

Search for pair production of a new heavy quark that decays into a $W$ boson and a light quark in $pp$ collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 92 (2015) 112007, 2015.
Inspire Record 1393281 DOI 10.17182/hepdata.71069

A search is presented for pair production of a new heavy quark ($Q$) that decays into a $W$ boson and a light quark ($q$) in the final state where one $W$ boson decays leptonically (to an electron or muon plus a neutrino) and the other $W$ boson decays hadronically. The analysis is performed using an integrated luminosity of 20.3 fb$^{-1}$ of $pp$ collisions at $\sqrt{s} = 8$ TeV collected by the ATLAS detector at the LHC. No evidence of $Q\bar{Q}$ production is observed. New chiral quarks with masses below 690 GeV are excluded at 95% confidence level, assuming BR$(Q\to Wq)=1$. Results are also interpreted in the context of vectorlike quark models, resulting in the limits on the mass of a vectorlike quark in the two-dimensional plane of BR$(Q\to Wq)$ versus BR$(Q\to Hq)$.

2 data tables

The expected and observed 95% CL upper limits on the cross section as a function of $m_Q$ when setting BR$(Q\to Wq) = 1$, which would be the case for a new chiral quark. Also shown are the $\pm 1\sigma$ and $\pm 2\sigma$ intervals on the distribution of expected results for the chiral model if no signal exists.

The upper and lower bounds on the range of heavy quark masses expected and observed to be excluded at 95% CL, as a function of the branching ratio of the heavy quark to $Wq$ versus $Hq$, with the branching ratio to $Zq$ fixed by the requirement BR$(Q\!\to\!Zq) = 1 - \text{BR}(Q\!\to\!Wq) - \text{BR}(Q\!\to\!Hq)$.


Absolute measurements of proton-proton small-angle elastic scattering and total cross section at 10, 19 and 26 GeV/ c

Bellettini, G. ; Cocconi, G. ; Diddens, A.N. ; et al.
Phys.Lett. 14 (1965) 164-168, 1965.
Inspire Record 1392870 DOI 10.17182/hepdata.895

None

4 data tables

'1'. '2'. '3'.

No description provided.

No description provided.

More…

Antiproton-proton elastic scattering at 4 GeV/c and derivation of diffraction slope at infinite energy

Czyzewski, O. ; Escoubes, B. ; Goldscmidt-Clermont, Y. ; et al.
Phys.Lett. 15 (1965) 188-191, 1965.
Inspire Record 1392865 DOI 10.17182/hepdata.837

None

4 data tables

'1'. '2'.

No description provided.

More…

$\pi^{-}$C collisions with backward proton emission at 4 and 40 GeV/c

Angelov, N. ; Lutpullaev, S.L. ; Nikitina, V.F. ; et al.
Sov.J.Nucl.Phys. 33 (1981) 98-99, 1981.
Inspire Record 1392857 DOI 10.17182/hepdata.17814

None

13 data tables

PROTONS MOMENTA LIE IN LAB BACKWARD HEMISPHERE.

No description provided.

No description provided.

More…