Measurement of inclusive electrons from open heavy-flavor hadron decays in $p$+$p$ collisions at $\sqrt{s} = 200$ GeV with the STAR detector

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.D 105 (2022) 032007, 2022.
Inspire Record 1928900 DOI 10.17182/hepdata.113876

We report a new measurement of the production cross section for inclusive electrons from open heavy-flavor hadron decays as a function of transverse momentum ($p_{\rm T}$) at mid-rapidity ($|y|<$ 0.7) in $p$+$p$ collisions at $\sqrt{s} = 200$ GeV. The result is presented for 2.5 $<p_{\rm T}<$ 10 GeV/$c$ with an improved precision above 6 GeV/$c$ with respect to the previous measurements, providing more constraints on perturbative QCD calculations. Moreover, this measurement also provides a high-precision reference for measurements of nuclear modification factors for inclusive electrons from open-charm and -bottom hadron decays in heavy-ion collisions.

0 data tables

Production of light (anti)nuclei in pp collisions at $\sqrt{s} = 13$TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 01 (2022) 106, 2022.
Inspire Record 1928822 DOI 10.17182/hepdata.115571

Understanding the production mechanism of light (anti)nuclei is one of the key challenges of nuclear physics and has important consequences for astrophysics, since it provides an input for indirect dark-matter searches in space. In this paper, the latest results about the production of light (anti)nuclei in pp collisions at $\sqrt{s} = 13$ TeV are presented, focusing on the comparison with the predictions of coalescence and thermal models. For the first time, the coalescence parameters $B_2$ for deuterons and $B_3$ for helions are compared with parameter-free theoretical predictions that are directly constrained by the femtoscopic measurement of the source radius in the same event class. A fair description of the data with a Gaussian wave function is observed for both deuteron and helion, supporting the coalescence mechanism for the production of light (anti)nuclei in pp collisions. This method paves the way for future investigations of the internal structure of more complex nuclear clusters, including the hypertriton.

0 data tables

Differential measurements of jet substructure and partonic energy loss in Au+Au collisions at $\sqrt {S_{NN}}$ =200 GeV

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Rev.C 105 (2022) 044906, 2022.
Inspire Record 1925052 DOI 10.17182/hepdata.113875

The STAR collaboration presents jet substructure measurements related to both the momentum fraction and the opening angle within jets in \pp and \AuAu collisions at \sqrtsn $= 200$ GeV. The substructure observables include SoftDrop groomed momentum fraction (\zg), groomed jet radius (\rg), and subjet momentum fraction (\zsj) and opening angle (\tsj). The latter observable is introduced for the first time. Fully corrected subjet measurements are presented for \pp collisions and are compared to leading order Monte Carlo models. The subjet \tsj~distributions reflect the jets leading opening angle and are utilized as a proxy for the resolution scale of the medium in \AuAu collisions. We compare data from \AuAu collisions to those from \pp which are embedded in minimum-bias \AuAu events in order to include the effects of detector smearing and the heavy-ion collision underlying event. The subjet observables are shown to be more robust to the background than \zg~and \rg. We observe no significant modifications of the subjet observables within the two highest-energy, back-to-back jets, resulting in a distribution of opening angles and the splittings that are vacuum-like. We also report measurements of the differential di-jet momentum imbalance ($A_{\rm{J}}$) for jets of varying \tsj. We find no qualitative differences in energy loss signatures for varying angular scales in the range $0.1 < $\tsj $ < 0.3$, leading to the possible interpretation that energy loss in this population of high momentum di-jet pairs, is due to soft medium-induced gluon radiation from a single color-charge as it traverses the medium.

0 data tables

Search for heavy resonances decaying to Z($\nu\bar{\nu}$)V(q$\bar{q}$') in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.D 106 (2022) 012004, 2022.
Inspire Record 1923626 DOI 10.17182/hepdata.103856

A search is presented for heavy bosons decaying to Z($\nu\bar{\nu}$)V(qq'), where V can be a W or a Z boson. A sample of proton-proton collision data at $\sqrt{s} =$ 13 TeV was collected by the CMS experiment during 2016-2018. The data correspond to an integrated luminosity of 137 fb$^{-1}$. The event categorization is based on the presence of high-momentum jets in the forward region to identify production through weak vector boson fusion. Additional categorization uses jet substructure techniques and the presence of large missing transverse momentum to identify W and Z bosons decaying to quarks and neutrinos, respectively. The dominant standard model backgrounds are estimated using data taken from control regions. The results are interpreted in terms of radion, W' boson, and graviton models, under the assumption that these bosons are produced via gluon-gluon fusion, Drell-Yan, or weak vector boson fusion processes. No evidence is found for physics beyond the standard model. Upper limits are set at 95% confidence level on various types of hypothetical new bosons. Observed (expected) exclusion limits on the masses of these bosons range from 1.2 to 4.0 (1.1 to 3.7) TeV.

21 data tables

Simulated distributions are shown for the cosine of the decay angle of SM vector bosons in the rest frame of a parent particle with a mass (mX) of 2\TeV. Solid lines represent VBF scenarios. Dashed lines represent ggF/DY scenarios.

Distributions of mT for ggF/DY-produced resonances X of mass 4.5 TeV.

Distributions of mT for VBF-produced resonances X of mass 4.5 TeV.

More…

Probing the gluonic structure of the deuteron with $J/\psi$ photoproduction in d+Au ultra-peripheral collisions

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.Lett. 128 (2022) 122303, 2022.
Inspire Record 1922652 DOI 10.17182/hepdata.113508

Understanding gluon density distributions and how they are modified in nuclei are among the most important goals in nuclear physics. In recent years, diffractive vector meson production measured in ultra-peripheral collisions (UPCs) at heavy-ion colliders has provided a new tool for probing the gluon density. In this Letter, we report the first measurement of $J/\psi$ photoproduction off the deuteron in UPCs at the center-of-mass energy $\sqrt{s_{_{\rm NN}}}=200~\rm GeV$ in d$+$Au collisions. The differential cross section as a function of momentum transfer $-t$ is measured. In addition, data with a neutron tagged in the deuteron-going Zero-Degree Calorimeter is investigated for the first time, which is found to be consistent with the expectation of incoherent diffractive scattering at low momentum transfer. Theoretical predictions based on the Color Glass Condensate saturation model and the gluon shadowing model are compared with the data quantitatively. A better agreement with the saturation model has been observed. With the current measurement, the results are found to be directly sensitive to the gluon density distribution of the deuteron and the deuteron breakup, which provides insights into the nuclear gluonic structure.

0 data tables

Search for heavy resonances decaying to WW, WZ, or WH boson pairs in the lepton plus merged jet final state in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.D 105 (2022) 032008, 2022.
Inspire Record 1920983 DOI 10.17182/hepdata.102645

A search for new heavy resonances decaying to pairs of bosons (WW, WZ, or WH) is presented. The analysis uses data from proton-proton collisions collected with the CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 137 fb$^{-1}$. One of the bosons is required to be a W boson decaying to an electron or muon and a neutrino, while the other boson is required to be reconstructed as a single jet with mass and substructure compatible with a quark pair from a W, Z, or Higgs boson decay. The search is performed in the resonance mass range between 1.0 and 4.5 TeV and includes a specific search for resonances produced via vector boson fusion. The signal is extracted using a two-dimensional maximum likelihood fit to the jet mass and the diboson invariant mass distributions. No significant excess is observed above the estimated background. Model-independent upper limits on the production cross sections of spin-0, spin-1, and spin-2 heavy resonances are derived as functions of the resonance mass and are interpreted in the context of bulk radion, heavy vector triplet, and bulk graviton models. The reported bounds are the most stringent to date.

9 data tables

Exclusion limits on the product of the production cross section and the branching fraction for a Bulk Graviton produced by gluon fusion and decaying to WW, as a function of the resonance mass hypothesis.

Exclusion limits on the product of the production cross section and the branching fraction for a Bulk Graviton produced by vector boson fusion and decaying to WW, as a function of the resonance mass hypothesis.

Exclusion limits on the product of the production cross section and the branching fraction for a Radion produced by gluon fusion and decaying to WW, as a function of the resonance mass hypothesis.

More…

Study of quark and gluon jet substructure in Z+jet and dijet events from pp collisions

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 01 (2022) 188, 2022.
Inspire Record 1920187 DOI 10.17182/hepdata.111308

Measurements of jet substructure describing the composition of quark- and gluon-initiated jets are presented. Proton-proton (pp) collision data at $\sqrt{s}$ =13 TeV collected with the CMS detector are used, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. Generalized angularities are measured that characterize the jet substructure and distinguish quark- and gluon-initiated jets. These observables are sensitive to the distributions of transverse momenta and angular distances within a jet. The analysis is performed using a data sample of dijet events enriched in gluon-initiated jets, and, for the first time, a Z+jet event sample enriched in quark-initiated jets. The observables are measured in bins of jet transverse momentum, and as a function of the jet radius parameter. Each measurement is repeated applying a "soft drop" grooming procedure that removes soft and large angle radiation from the jet. Using these measurements, the ability of various models to describe jet substructure is assessed, showing a clear need for improvements in Monte Carlo generators.

948 data tables

Mean of ungroomed LHA for AK4 jets as a function of PT in the central dijet region.

Mean of ungroomed LHA for AK4 jets as a function of PT in the forward dijet region.

Mean of ungroomed LHA (charged-only) for AK4 jets as a function of PT in the central dijet region.

More…

Search for exotic decays of the Higgs boson into $b\bar{b}$ and missing transverse momentum in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 01 (2022) 063, 2022.
Inspire Record 1917172 DOI 10.17182/hepdata.104855

A search for the exotic decay of the Higgs boson ($H$) into a $b\bar{b}$ resonance plus missing transverse momentum is described. The search is performed with the ATLAS detector at the Large Hadron Collider using 139 $\mathrm{fb}^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV. The search targets events from $ZH$ production in an NMSSM scenario where $H \rightarrow \tilde{\chi}^{0}_{2}\tilde{\chi}^{0}_{1}$, with $\tilde{\chi}^{0}_{2} \rightarrow {a} \tilde{\chi}^{0}_{1}$, where $a$ is a light pseudoscalar Higgs boson and $\tilde{\chi}^{0}_{1,2}$ are the two lightest neutralinos. The decay of the $a$ boson into a pair of $b$-quarks results in a peak in the dijet invariant mass distribution. The final-state signature consists of two leptons, two or more jets, at least one of which is identified as originating from a $b$-quark, and missing transverse momentum. Observations are consistent with Standard Model expectations and upper limits are set on the product of cross section times branching ratio for a three-dimensional scan of the masses of the $\tilde{\chi}^{0}_{2}$, $\tilde{\chi}^{0}_{1}$ and $a$ boson.

20 data tables

Distribution of the dijet invariant mass in CRZ. The Z+HF and $t\bar{t}$ scale factors, described in the text, have been applied to the simulated samples. The distribution labeled "Signal" is for the model with ($m_a$, $m_{\tilde{\chi}_{1}^{0}}$, $m_{\tilde{\chi}_{2}^{0}}$) = (45 GeV, 10 GeV, 80 GeV).

Distribution of the missing transverse energy in VRMET. The Z+HF and $t\bar{t}$ scale factors, described in the text, have been applied to the simulated samples. The distribution labeled "Signal" is for the model with ($m_a$, $m_{\tilde{\chi}_{1}^{0}}$, $m_{\tilde{\chi}_{2}^{0}}$) = (45 GeV, 10 GeV, 80 GeV).

Distribution of the dijet invariant mass in CRTop. The Z+HF and $t\bar{t}$ scale factors, described in the text, have been applied to the simulated samples. The distribution labeled "Signal" is for the model with ($m_a$, $m_{\tilde{\chi}_{1}^{0}}$, $m_{\tilde{\chi}_{2}^{0}}$) = (45 GeV, 10 GeV, 80 GeV).

More…

Observation of B$^0_s$ mesons and measurement of the B$^0_s$/B$^+$ yield ratio in PbPb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Ambrogi, Federico ; et al.
Phys.Lett.B 829 (2022) 137062, 2022.
Inspire Record 1917092 DOI 10.17182/hepdata.95232

The B$^0_s$ and B$^+$ production yields are measured in PbPb collisions at a center-of-mass energy per nucleon pair of 5.02 TeV. The data sample, collected with the CMS detector at the LHC, corresponds to an integrated luminosity of 1.7 nb$^{-1}$. The mesons are reconstructed in the exclusive decay channels B$^0_s$$\to$ J/$\psi(\mu^+\mu^-)\phi($K$^+$K$^-)$ and B$^+$$\to$ J/$\psi(\mu^+\mu^-)$K$^+$, in the transverse momentum range 7-50 GeV/c and absolute rapidity 0-2.4. The B$^0_s$ meson is observed with a statistical significance in excess of five standard deviations for the first time in nucleus-nucleus collisions. The measurements are performed as functions of the transverse momentum of the B mesons and of the PbPb collision centrality. The ratio of production yields of B$^0_s$ and B$^+$ is measured and compared to theoretical models that include quark recombination effects.

0 data tables

Observation of tW production in the single-lepton channel in pp collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 11 (2021) 111, 2021.
Inspire Record 1917152 DOI 10.17182/hepdata.102957

A measurement of the cross section of the associated production of a single top quark and a W boson in final states with a muon or electron and jets in proton-proton collisions at $\sqrt{s}$ = 13 TeV is presented. The data correspond to an integrated luminosity of 36 fb$^{-1}$ collected with the CMS detector at the CERN LHC in 2016. A boosted decision tree is used to separate the tW signal from the dominant $\mathrm{t\bar{t}}$ background, whilst the subleading W+jets and multijet backgrounds are constrained using data-based estimates. This result is the first observation of the tW process in final states containing a muon or electron and jets, with a significance exceeding 5 standard deviations. The cross section is determined to be 89 $\pm$ 4 (stat) $\pm$ 12 (syst) pb, consistent with the standard model.

2 data tables

The observed and theoretical cross section. In the observed, the first uncertainty is statistical, the second uncertianty is the systematic. In the expected, the first uncertainty is due to scale variations, the second due to the choice of PDF.

The systematic sources considered in the analysis and their relative contribution to the observed uncertainty. The uncertainties are divided by normalization, experimental, theoretical and statistical uncertainties, with each section ordered by their contribution to the total uncertainty.