Study of excited $\Lambda_\mathrm{b}^0$ states decaying to $\Lambda_\mathrm{b}^0\pi^+\pi^-$ in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 803 (2020) 135345, 2020.
Inspire Record 1776599 DOI 10.17182/hepdata.93064

A study of excited $\Lambda_\mathrm{b}^0$ baryons is reported, based on a data sample collected in 2016-2018 with the CMS detector at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of up to 140 fb$^{-1}$. The existence of four excited $\Lambda_\mathrm{b}^0$ states: $\Lambda_\mathrm{b}$(5912)$^0$, $\Lambda_\mathrm{b}$(5920)$^0$, $\Lambda_\mathrm{b}$(6146)$^0$, and $\Lambda_\mathrm{b}$(6152)$^0$ in the $\Lambda_\mathrm{b}^0\pi^+\pi^-$ mass spectrum is confirmed, and their masses are measured. The $\Lambda_\mathrm{b}^0\pi^+\pi^-$ mass distribution exhibits a broad excess of events in the region of 6040-6100 MeV, whose origin cannot be discerned with the present data.

2 data tables

Measured mass differences


Study of the $\mathrm{B}^{+}\rightarrow \mathrm{J}/\psi \bar{\Lambda} \mathrm{p}$ decay in proton-proton collisions at $\sqrt{s}= 8~\mathrm{TeV}$

The CMS collaboration
CMS-PAS-BPH-18-005, 2019.
Inspire Record 1726694 DOI 10.17182/hepdata.89270

A study of the $\mathrm{B}^{+} \rightarrow \mathrm{J}/\psi \bar{\Lambda} \mathrm{p}$ decay is reported, using proton-proton collision data collected at $\sqrt{s}= 8~\mathrm{TeV}$ by the CMS experiment at the LHC, corresponding to an integrated luminosity of $19.6~\mathrm{fb}^{-1}$. The ratio of branching fractions $\frac{{\cal B}(\mathrm{B}^{+} \rightarrow \mathrm{J}/\psi \bar{\Lambda} \mathrm{p})}{{\cal B}(\mathrm{B}^{+} \rightarrow \mathrm{J}/\psi \mathrm{K}^{*+})}$ is measured to be $1.054\pm0.057~\text{(stat)} \pm0.028~\text{(syst)}\pm0.011({\cal B})\%$, where the first uncertainty is statistical, the second is systematic, and the third reflects the uncertainties in the world-average branching fractions. The invariant mass distributions of $\mathrm{J}/\psi \bar{\Lambda}$, $\mathrm{J}/\psi \mathrm{p}$, and $\bar{\Lambda} \mathrm{p}$ systems produced in the $\mathrm{B}^{+} \rightarrow \mathrm{J}/\psi \bar{\Lambda} \mathrm{p}$ decay are investigated and found to be inconsistent with the pure phase space hypothesis. The analysis is extended by using a model-independent angular amplitude analysis, which shows that the inclusion of contributions from excited kaons in the $\bar{\Lambda} \mathrm{p}$ system does improve the description of the observed invariant mass distributions.

1 data table

The measured ratio of branching fractios


Test of lepton flavor universality in B$^{\pm}$$\to$ K$^{\pm}\mu^+\mu^-$ and B$^{\pm}$$\to$ K$^{\pm}$e$^+$e$^-$ decays in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-BPH-22-005, 2024.
Inspire Record 2747130 DOI 10.17182/hepdata.146018

A test of lepton flavor universality in B$^{\pm}$$\to$ K$^{\pm}\mu^+\mu^-$ and B$^{\pm}$$\to$ K$^{\pm}$e$^+$e$^-$ decays, as well as a measurement of differential and integrated branching fractions of a nonresonant B$^{\pm}$$\to$ K$^{\pm}\mu^+\mu^-$ decay are presented. The analysis is made possible by a dedicated data set of proton-proton collisions at $\sqrt{s}$ = 13 TeV recorded in 2018, by the CMS experiment at the LHC, using a special high-rate data stream designed for collecting about 10 billion unbiased b hadron decays. The ratio of the branching fractions $\mathcal{B}$(B$^{\pm}$$\to$ K$^{\pm}\mu^+\mu^-$) to $\mathcal{B}$(B$^{\pm}$$\to$ K$^{\pm}$e$^+$e$^-$) is determined from the measured double ratio $R$(K) of these decays to the respective branching fractions of the B$^\pm$$\to$ J/$\psi$K$^\pm$ with J/$\psi$$\to$$\mu^+\mu^-$ and e$^+$e$^-$ decays, which allow for significant cancellation of systematic uncertainties. The ratio $R$(K) is measured in the range 1.1 $\lt q^2 \lt$ 6.0 GeV$^2$, where $q$ is the invariant mass of the lepton pair, and is found to be $R$(K) = 0.78$^{+0.47}_{-0.23}$, in agreement with the standard model expectation $R$(K) $\approx$ 1. This measurement is limited by the statistical precision of the electron channel. The integrated branching fraction in the same $q^2$ range, $\mathcal{B}$(B$^{\pm}$$\to$ K$^{\pm}\mu^+\mu^-$) = (12.42 $\pm$ 0.68) $\times$ 10$^{-8}$, is consistent with the present world-average value and has a comparable precision.

9 data tables

The differential $\text{B}^+ \to \text{K}^+\mu^+\mu^-$ branching fraction measured in the individual $q^2$ bins. The uncertainties in the yields are statistical uncertainties from the fit, while the branching fraction uncertainties include both the statistical and systematic components.

Differential branching fraction $d\mathcal{B}/dq^2$, with theoretical predictions obtained with the HEPFiT, SuperIso, Flavio, and EOS packages. The HEPFiT predictions are available only for $q^2 < 8\ \mathrm{GeV}^2$.

Relative uncertainties in the differential branching fraction measurement of $\mathrm{B}^+\to\mathrm{K}^+\mu^+\mu^-$ per $q^2$ bin.

More…