Date

Collaboration Reset

Subject_areas

Search for an exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state with two muons and two b quarks in pp collisions at 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett. B795 (2019) 398-423, 2019.
Inspire Record 1709317 DOI 10.17182/hepdata.91235

A search for exotic decays of the Higgs boson to a pair of light pseudoscalar particles a$_1$ is performed under the hypothesis that one of the pseudoscalars decays to a pair of opposite sign muons and the other decays to b$\overline{\mathrm{b}}$. Such signatures are predicted in a number of extensions of the standard model (SM), including next-to-minimal supersymmetry and two-Higgs-doublet models with an additional scalar singlet. The results are based on a data set of proton-proton collisions corresponding to an integrated luminosity of 35.9 fb$^{-1}$, accumulated with the CMS experiment at the CERN LHC in 2016 at a centre-of-mass energy of 13 TeV. No statistically significant excess is observed with respect to the SM backgrounds in the search region for pseudoscalar masses from 20 GeV to half of the Higgs boson mass. Upper limits at 95% confidence level are set on the product of the production cross section and branching fraction, $\sigma_{\mathrm{h}}\mathcal{B}$(h $\to$ a$_1$ a$_1$ $\to$ $\mu^+\mu^-\mathrm{b}\bar{\mathrm{b}}$), ranging from 5 to 33 fb, depending on the pseudoscalar mass. Corresponding limits on the branching fraction, assuming the SM prediction for $\sigma_{\mathrm{h}}$, are (1$-$7)$\times$ 10$^{-4}$.

2 data tables

Observed and expected upper limits at 95% CL on the product of the Higgs boson production cross section and B(h->aa->mumubb)

Observed and expected upper limits at 95% CL on the branching fraction of (h->aa->mumubb)


Forward–backward asymmetry of Drell–Yan lepton pairs in pp collisions at $\sqrt{s} = 8$ $\,\mathrm{TeV}$

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J. C76 (2016) 325, 2016.
Inspire Record 1415949 DOI 10.17182/hepdata.73121

A measurement of the forward–backward asymmetry ${A}_{\mathrm{FB}}$ of oppositely charged lepton pairs ( $\mu \mu $ and $\mathrm{e}\mathrm{e}$ ) produced via $\mathrm{Z}/\gamma ^*$ boson exchange in pp collisions at $\sqrt{s} = 8$ $\,\mathrm{TeV}$ is presented. The data sample corresponds to an integrated luminosity of 19.7 $\,\mathrm{fb}^{-1}$ collected with the CMS detector at the LHC. The measurement of ${A}_{\mathrm{FB}}$ is performed for dilepton masses between 40 $\,\text {GeV}$ and 2 $\,\mathrm{TeV}$ and for dilepton rapidity up to 5. The ${A}_{\mathrm{FB}}$ measurements as a function of dilepton mass and rapidity are compared with the standard model predictions.

40 data tables

Unfolded combined measurements of AFB in each M-|y| bin (mu+mu- and e+e- combined).

Unfolded measurement of AFB for the forward rapidity region (e+e-).

Unfolded measurements of AFB in each M-|y| bin (mu+mu-).

More…

Search for a Higgs boson decaying into $\gamma^* \gamma \to \ell \ell \gamma$ with low dilepton mass in pp collisions at $\sqrt s = $ 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett. B753 (2016) 341-362, 2016.
Inspire Record 1382587 DOI 10.17182/hepdata.73712

A search is described for a Higgs boson decaying into two photons, one of which has an internal conversion to a muon or an electron pair ( ℓℓγ ). The analysis is performed using proton–proton collision data recorded with the CMS detector at the LHC at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.7 fb −1 . The events selected have an opposite-sign muon or electron pair and a high transverse momentum photon. No excess above background has been found in the three-body invariant mass range 120<mℓℓγ<150 GeV , and limits have been derived for the Higgs boson production cross section times branching fraction for the decay H→γ⁎γ→ℓℓγ , where the dilepton invariant mass is less than 20 GeV. For a Higgs boson with mH=125 GeV , a 95% confidence level (CL) exclusion observed (expected) limit is 6.7 ( 5.9−1.8+2.8 ) times the standard model prediction. Additionally, an upper limit at 95% CL on the branching fraction of H→(J/ψ)γ for the 125 GeV Higgs boson is set at 1.5×10−3 .

4 data tables

The 95% CL exclusion limit, as a function of the mass hypothesis, $m_H$ , on $\sigma/\sigma_{SM}$, the cross section times the branching fraction of a Higgs boson decaying into a photon and a lepton pair with $m_{\ell\ell}$ < 20 GeV, divided by the SM value.

The 95% CL exclusion limit, as a function of the mass hypothesis, $m_H$ , on $\sigma/\sigma_{SM}$, the cross section times the branching fraction of a Higgs boson decaying into a photon and a lepton pair with $m_{\ell\ell}$ < 20 GeV, divided by the SM value.

The 95% CL exclusion limit, as a function of the mass hypothesis, $m_H$ , on $\sigma/\sigma_{SM}$, the cross section times the branching fraction of a Higgs boson decaying into a photon and a lepton pair with $m_{\ell\ell}$ < 20 GeV, divided by the SM value.

More…

Measurement of the Z boson differential cross section in transverse momentum and rapidity in proton–proton collisions at 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett. B749 (2015) 187-209, 2015.
Inspire Record 1359450 DOI 10.17182/hepdata.68945
4 data tables

Measured double differential fiducial cross section normalised to the inclusive fiducial cross section. The uncertainty indicates the total experimental uncertainties (statistical and systematic added in quadrature).

Measured absolute double differential fiducial cross section. The uncertainty indicates the total experimental uncertainties (statistical and systematic added in quadrature).

Covariance matrix of total experimental uncertainties (statistical and systematic uncertainties added in quadrature) of double differential fiducial cross section normalised to the inclusive fiducial cross section. The bin index is PT_i + 10*y_j.

More…

Angular coefficients of Z bosons produced in pp collisions at $\sqrt{s}$ = 8 TeV and decaying to $\mu^+ \mu^-$ as a function of transverse momentum and rapidity

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett. B750 (2015) 154-175, 2015.
Inspire Record 1359451 DOI 10.17182/hepdata.69285

Measurements of the five most significant angular coefficients, A[0] through A[4], for Z bosons produced in pp collisions at $\sqrt{s}$ = 8 TeV and decaying to $\mu^+ \mu^-$ are presented as a function of the transverse momentum and rapidity of Z boson. The integrated luminosity of the dataset collected with the CMS detector at the LHC corresponds to 19.7 inverse femtobarns. These measurements provide comprehensive information about Z boson production mechanisms, and are compared to QCD predictions at leading order, next-to-leading order, and next-to-next-to-leading order in perturbation theory.

2 data tables

The five angular coefficients A0 to A4 and A0-A2 in bins of qT for |y| < 1.

The five angular coefficients A0 to A4 and A0-A2 in bins of qT for 1 < |y| < 2.1.


Measurements of differential and double-differential Drell-Yan cross sections in proton-proton collisions at 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J. C75 (2015) 147, 2015.
Inspire Record 1332509 DOI 10.17182/hepdata.69869

Measurements of the differential and double-differential Drell–Yan cross sections in the dielectron and dimuon channels are presented. They are based on proton–proton collision data at $\sqrt{s} = 8\,\text {TeV} $ recorded with the CMS detector at the LHC and corresponding to an integrated luminosity of 19.7 $\,\text {fb}^{-1}$ . The measured inclusive cross section in the $\mathrm{Z}$ peak region (60–120 $\,\text {GeV}$ ), obtained from the combination of the dielectron and dimuon channels, is $1138 \pm 8\,\text {(exp)} \pm 25\,\text {(theo)} \pm 30\,\text {(lumi)} \text {\,pb} $ , where the statistical uncertainty is negligible. The differential cross section $\mathrm{d}\sigma /\mathrm{d}{}m$ in the dilepton mass range 15–2000 $\,\text {GeV}$ is measured and corrected to the full phase space. The double-differential cross section $\mathrm{d}^2\sigma /\mathrm{d}{}m\,\mathrm{d}|y |$ is also measured over the mass range 20 to 1500 $\,\text {GeV}$ and absolute dilepton rapidity from 0 to 2.4. In addition, the ratios of the normalized differential cross sections measured at $\sqrt{s} = 7$ and 8 $\,\text {TeV}$ are presented. These measurements are compared to the predictions of perturbative QCD at next-to-leading and next-to-next-to-leading (NNLO) orders using various sets of parton distribution functions (PDFs). The results agree with the NNLO theoretical predictions computed with fewz 3.1 using the CT10 NNLO and NNPDF2.1 NNLO PDFs. The measured double-differential cross section and ratio of normalized differential cross sections are sufficiently precise to constrain the proton PDFs.

15 data tables

Absolute Drell-Yan cross section measurements in the Z peak region (60 < m < 120 GeV). The uncertainties in the measurements include the experimental and theoretical systematic sources and the uncertainty in the integrated luminosity. The statistical component is negligible.

The Drell-Yan differential pre-FSR cross section D(SIG)/DM as measured in the combined dilepton channel for the full phase space. Theoretical uncertainty on acceptance is included.

The Drell-Yan pre-FSR dilepton rapidity distribution D(SIG)/DABS(YRAP) within the detector acceptance, for the mass bin 20-30 GeV, as measured in the combined dilepton channel.

More…

Measurement of jet multiplicity distributions in $\mathrm {t}\overline{\mathrm {t}}$ production in pp collisions at $\sqrt{s} = 7\,\text {TeV} $

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Eur.Phys.J. C74 (2015) 3014, 2015.
Inspire Record 1290126 DOI 10.17182/hepdata.64426
6 data tables

Normalised differential TOP TOPBAR production cross section as a function of the jet multiplicity for jets with PT(JET) > 30 GeV in the dilepton channel. The statistical and main experimental and model systematic uncertainties are displayed.

Normalised differential TOP TOPBAR production cross section as a function of the jet multiplicity for jets with PT(JET) > 60 GeV in the dilepton channel. The statistical and main experimental and model systematic uncertainties are displayed.

Normalised differential TOP TOPBAR production cross section as a function of the jet multiplicity for jets with PT(JET) > 35 GeV in the lepton+jets channel. The statistical and main experimental and model systematic uncertainties are displayed.

More…

Measurement of the ratio $\mathcal B(t \to Wb)/\mathcal B(t \to Wq)$ in pp collisions at $\sqrt{s}$ = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett. B736 (2014) 33-57, 2014.
Inspire Record 1289223 DOI 10.17182/hepdata.64489

The ratio of the top-quark branching fractions $R = B(t \to Wb)/B(t \to Wq)$, where the denominator includes the sum over all down-type quarks (q = b, s, d), is measured in the $t\bar{t}$ dilepton final state with proton-proton collision data at $\sqrt{s}$ = 8 TeV from an integrated luminosity of 19.7 inverse-femtobarns, collected with the CMS detector. In order to quantify the purity of the signal sample, the cross section is measured by fitting the observed jet multiplicity, thereby constraining the signal and background contributions. By counting the number of b jets per event, an unconstrained value of R = 1.014 $\pm$ 0.003 (stat) $\pm$ 0.032 (syst) is measured, in good agreement with the standard model prediction. A lower limit R greater than 0.955 at the 95% confidence level is obtained after requiring R lower than one, and a lower limit on the Cabibbo-Kobayashi-Maskawa matrix element |$V_tb$| greater than 0.975 is set at 95% confidence level. The result is combined with a previous CMS measurement of the t-channel single-top-quark cross section to determine the top-quark total decay width, $\Gamma_t$ = 1.36 $\pm$ 0.02 (stat)$^{+0.14}_{-0.11}$ (syst) GeV.

3 data tables

The measured TOP TOPBAR production cross section.

The measured ratio of branching fractions, R = BR(TOP --> W BOTTOM) / BR(TOP --> W QUARK) where the denominator includes the sum over all down-type quarks (QUARK = BOTTOM, STRANGE, DOWN). The combined measurement and the individual measurements from the three channels considered are presented.

An indirect measurement of the top-quark total decay width.


Measurement of the differential and double-differential Drell-Yan cross sections in proton-proton collisions at $\sqrt{s} =$ 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 1312 (2013) 030, 2013.
Inspire Record 1262319 DOI 10.17182/hepdata.62207

Measurements of the differential and double-differential Drell-Yan cross sections are presented using an integrated luminosity of 4.5(4.8) inverse femtobarns in the dimuon (dielectron) channel of proton-proton collision data recorded with the CMS detector at the LHC at $\sqrt{s}$ = 7 TeV. The measured inclusive cross section in the Z-peak region (60-120 GeV) is $\sigma(\ell \ell)$ = 986.4 +/- 0.6 (stat.) +/- 5.9 (exp. syst.) +/- 21.7 (th. syst.) +/- 21.7 (lum.) pb for the combination of the dimuon and dielectron channels. Differential cross sections $d\sigma/dm$ for the dimuon, dielectron, and combined channels are measured in the mass range 15 to 1500 GeV and corrected to the full phase space. Results are also presented for the measurement of the double-differential cross section $d^2\sigma/dm d |y|$ in the dimuon channel over the mass range 20 to 1500 GeV and absolute dimuon rapidity from 0 to 2.4. These measurements are compared to the predictions of perturbative QCD calculations at next-to-leading and next-to-next-to-leading orders using various sets of parton distribution functions.

10 data tables

Normalization factors for the cross section measurements from the Z-peak region (60 < M < 120 GeV) with associated uncertainties. The measurements are given in the muon, electron and combined channels. The three systematic uncertainties correspond to experimental, theoretical and luminosity.

The DY cross section measurements for the muon channel normalized to the Z-peak region, pre- and post-FSR, as measured in the full acceptance and for the CMS detector acceptance. The uncertainty indicates the experimental (statistical and systematic) uncertainties summed in quadrature with the theoretical uncertainty resulting from the model-dependent kinematic distributions inside each bin.

The DY cross section measurements for the electron channel normalized to the Z-peak region, pre- and post-FSR, as measured in the full acceptance and for the CMS detector acceptance. The uncertainty indicates the experimental (statistical and systematic) uncertainties summed in quadrature with the theoretical uncertainty resulting from the model-dependent kinematic distributions inside each bin.

More…

Measurement of the Drell-Yan Cross Section in $pp$ Collisions at $\sqrt{s}=7$ TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 1110 (2011) 007, 2011.
Inspire Record 921788 DOI 10.17182/hepdata.57980

The Drell-Yan differential cross section is measured in pp collisions at sqrt(s) = 7 TeV, from a data sample collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 36 inverse picobarns. The cross section measurement, normalized to the measured cross section in the Z region, is reported for both the dimuon and dielectron channels in the dilepton invariant mass range 15-600 GeV. The normalized cross section values are quoted both in the full phase space and within the detector acceptance. The effect of final state radiation is also identified. The results are found to agree with theoretical predictions.

3 data tables

The DY spectrum normalized to the Z0 region and to the mass bin widths.

The DY spectrum normalized to the Z0 region for the dimuon channel. Results are for within the detector acceptance(DET) and full phase space both before (POST-FSR) and after final state raduiation corrections.

The DY spectrum normalized to the Z0 region for the dielectron channel. Results are for within the detector acceptance(DET) and full phase space both before (POST-FSR) and after final state raduiation corrections.