Date

Collaboration Reset

Subject_areas

Measurement of prompt and nonprompt charmonium suppression in PbPb collisions at 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
No Journal Information, 2017.
Inspire Record 1644903 DOI 10.17182/hepdata.80816

The nuclear modification factors of J/$\psi$ and $\psi$(2S) mesons are measured in PbPb collisions at a centre-of-mass energy per nucleon pair of $\sqrt{s_{\mathrm{NN}}} =$ 5.02 TeV. The analysis is based on PbPb and pp data samples collected by CMS at the LHC in 2015, corresponding to integrated luminosities of 464 $\mu$b$^{-1}$ and 28 pb$^{-1}$, respectively. The measurements are performed in the dimuon rapidity range of $|y| <$ 2.4 as a function of centrality, rapidity, and transverse momentum (p$_\mathrm{T}$) from p$_\mathrm{T}=$ 3 GeV/$c$ in the most forward region and up to 50 GeV/$c$. Both prompt and nonprompt (coming from b hadron decays) mesons are observed to be increasingly suppressed with centrality, with a magnitude similar to the one observed at $\sqrt{s_{\mathrm{NN}}}=$ 2.76 TeV for the two J/$\psi$ meson components. No dependence on rapidity is observed for either prompt or nonprompt J/$\psi$ mesons. An indication of a lower prompt J/$\psi$ meson suppression at high p$_\mathrm{T}$ is seen with respect to that observed at intermediate p$_\mathrm{T}$. The prompt $\psi$(2S) meson yield is found to be more suppressed than that of the prompt J/$\psi$ mesons in the entire p$_\mathrm{T}$ range.

32 data tables

Fraction of J/psi mesons coming from the decay of b hadrons, i.e. nonprompt J/psi meson fraction, as a function of dimuon pT for pp and PbPb collisions, for all centralities.

Fraction of J/psi mesons coming from the decay of b hadrons, i.e. nonprompt J/psi meson fraction, as a function of dimuon rapidity for pp and PbPb collisions, for all centralities.

Differential cross section of prompt J/psi mesons as a function of dimuon pT in pp and PbPb collisions. The PbPb cross sections are normalised by TAA for direct comparison. Global uncertainties arise from the integrated luminosity uncertainty in pp collisions, and the number of minimum bias events and TAA uncertainties for PbPb collisions.

More…

Version 2
Suppression of $\Upsilon(1S)$, $\Upsilon(2S)$ and $\Upsilon(3S)$ production in PbPb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B, 2016.
Inspire Record 1495866 DOI 10.17182/hepdata.77220

The production yields of Upsilon(1S), Upsilon(2S), and Upsilon(3S) quarkonium states are measured through their decays into muon pairs in the CMS detector, in PbPb and pp collisions at the centre-of-mass energy per nucleon pair of 2.76 TeV. The data correspond to integrated luminosities of 166 inverse microbarns and 5.4 inverse picobarns for PbPb and pp collisions, respectively. Differential production cross sections are reported as functions of Upsilon rapidity $y$ up to 2.4, and transverse momentum pt up to 20 GeV/c. A strong centrality-dependent suppression is observed in PbPb relative to pp collisions, by factors of up to ~2 and 8, for the Upsilon(1S) and Upsilon(2S) states, respectively. No significant dependence of this suppression is observed as a function of y or pt. The Upsilon(3S) state is not observed in PbPb collisions, which corresponds to a suppression for the centrality-integrated data by at least a factor of ~7 at a 95% confidence level. The observed suppression is in agreement with theoretical scenarios modeling the sequential melting of quarkonium states in a quark gluon plasma.

17 data tables

Differential cross section for Y(1S) states as a function of their transverse momentum and per unit of rapidity in pp collisions. Statistical (systematic) uncertainties are displayed as error bars (boxes). Global relative uncertainties of 3.7% are not displayed.

Differential cross section for Y(2S) states as a function of their transverse momentum and per unit of rapidity in pp collisions. Statistical (systematic) uncertainties are displayed as error bars (boxes). Global relative uncertainties of 3.7% are not displayed.

Differential cross section for Y(3S) states as a function of their transverse momentum and per unit of rapidity in pp collisions. Statistical (systematic) uncertainties are displayed as error bars (boxes). Global relative uncertainties of 3.7% are not displayed.

More…

Relative modification of prompt $ {\psi\mathrm{(2S)}} $ and $\mathrm{J}/\psi $ yields from pp to PbPb collisions at ${\sqrt{s_{\mathrm{NN}}}} = $ 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett., 2016.
Inspire Record 1495840 DOI 10.17182/hepdata.77102

The relative modification of the prompt psi(2S) and J/psi yields from pp to PbPb collisions, at the center of mass energy of 5.02 TeV per nucleon pair, is presented. The analysis is based on pp and PbPb data samples collected by the CMS experiment at the LHC in 2015, corresponding to integrated luminosities of 28.0 inverse picobarns and 464 inverse microbarns, respectively. The double ratio of measured yields of prompt charmonia reconstructed through their decays into muon pairs, (N[psi(2S)]/N[J/psi])[PbPb]/ (N[psi(2S)]/N[J/psi])[pp], is determined as a function of PbPb collision centrality and charmonium transverse momentum pt, in two kinematic intervals: abs(y) < 1.6 covering 6.5 < pt < 30GeV/c and 1.6 < abs(y) < 2.4 covering 3 <pt< 30GeV/c. The centrality-integrated double ratios are 0.36 +/- 0.08 (stat) +/-0.05 (syst) in the first interval and 0.24 +/- 0.22 (stat) +/- 0.09 (syst) in the second. The double ratio is lower than unity in all the measured bins, suggesting that the psi(2S) yield is more suppressed than the J/psi yield in the explored phase space.

10 data tables

Double ratio of measured yields, $(N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{\mathrm{PbPb}} / (N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{pp}$, as a function of pT, for the midrapidity analysis bin.

95% CL intervals on the double ratio of measured yields, $(N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{\mathrm{PbPb}} / (N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{pp}$, as a function of pT, for the midrapidity analysis bin.

Double ratio of measured yields, $(N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{\mathrm{PbPb}} / (N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{pp}$, as a function of pT, for the forward rapidity analysis bin.

More…

Search for neutral MSSM Higgs bosons decaying to $\mu^{+} \mu^{-}$ in pp collisions at $ \sqrt{s} =$ 7 and 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett. B752 (2016) 221-246, 2016.
Inspire Record 1386854 DOI 10.17182/hepdata.70526

A search for neutral Higgs bosons predicted in the minimal supersymmetric standard model (MSSM) for μ+μ− decay channels is presented. The analysis uses data collected by the CMS experiment at the LHC in proton–proton collisions at centre-of-mass energies of 7 and 8 TeV, corresponding to integrated luminosities of 5.1 and 19.3 fb −1 , respectively. The search is sensitive to Higgs bosons produced either through the gluon fusion process or in association with a bb‾ quark pair. No statistically significant excess is observed in the μ+μ− mass spectrum. Results are interpreted in the framework of several benchmark scenarios, and the data are used to set an upper limit on the MSSM parameter tan⁡β as a function of the mass of the pseudoscalar A boson in the range from 115 to 300 GeV. Model independent upper limits are given for the product of the cross section and branching fraction for gluon fusion and b quark associated production at s=8 TeV . They are the most stringent limits obtained to date in this channel.

3 data tables

The 95% CL upper limit on tan B as a function of mA, after combining the data from the two event categories at the two centre-of-mass energies (7 and 8 TeV). The results are obtained in the framework of the mh-mod+ benchmark scenario.

The 95% CL limit on the product of the cross section and the decay branching fraction to two muons as a function of mPHI, obtained from a model independent analysis of the data. The results refer to b quark associated production, obtained using data collected at swrt(s) = 8 TeV.

The 95% CL limit on the product of the cross section and the decay branching fraction to two muons as a function of mPHI, obtained from a model independent analysis of the data. The results refer to gluon-fusion production, obtained using data collected at swrt(s) = 8 TeV.


Angular analysis of the decay $B^0 \to K^{*0} \mu^+ \mu^-$ from pp collisions at $\sqrt s = 8$ TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett. B753 (2016) 424-448, 2016.
Inspire Record 1385600 DOI 10.17182/hepdata.17057
2 data tables

The measured values of signal yield, FL, AFB, and differential branching fraction in bins of the dimuon invariant mass squared. The (FL,AFB) correlation factors are also shown.

The measured values of FL, AFB, and differential branching fraction in bins of the dimuon invariant mass squared, combining the 7 TeV and 8 TeV results.


Measurement of the Z boson differential cross section in transverse momentum and rapidity in proton–proton collisions at 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett. B749 (2015) 187-209, 2015.
Inspire Record 1359450 DOI 10.17182/hepdata.68945
4 data tables

Measured double differential fiducial cross section normalised to the inclusive fiducial cross section. The uncertainty indicates the total experimental uncertainties (statistical and systematic added in quadrature).

Measured absolute double differential fiducial cross section. The uncertainty indicates the total experimental uncertainties (statistical and systematic added in quadrature).

Covariance matrix of total experimental uncertainties (statistical and systematic uncertainties added in quadrature) of double differential fiducial cross section normalised to the inclusive fiducial cross section. The bin index is PT_i + 10*y_j.

More…

Angular coefficients of Z bosons produced in pp collisions at $\sqrt{s}$ = 8 TeV and decaying to $\mu^+ \mu^-$ as a function of transverse momentum and rapidity

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett. B750 (2015) 154-175, 2015.
Inspire Record 1359451 DOI 10.17182/hepdata.69285

Measurements of the five most significant angular coefficients, A[0] through A[4], for Z bosons produced in pp collisions at $\sqrt{s}$ = 8 TeV and decaying to $\mu^+ \mu^-$ are presented as a function of the transverse momentum and rapidity of Z boson. The integrated luminosity of the dataset collected with the CMS detector at the LHC corresponds to 19.7 inverse femtobarns. These measurements provide comprehensive information about Z boson production mechanisms, and are compared to QCD predictions at leading order, next-to-leading order, and next-to-next-to-leading order in perturbation theory.

2 data tables

The five angular coefficients A0 to A4 and A0-A2 in bins of qT for |y| < 1.

The five angular coefficients A0 to A4 and A0-A2 in bins of qT for 1 < |y| < 2.1.


Measurement of the Zγ Production Cross Section in pp Collisions at 8 TeV and Search for Anomalous Triple Gauge Boson Couplings

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 1504 (2015) 164, 2015.
Inspire Record 1345354 DOI 10.17182/hepdata.66985

The cross section for the production of Zγ in proton-proton collisions at 8 TeV is measured based on data collected by the CMS experiment at the LHC corresponding to an integrated luminosity of 19.5 fb$^{−1}$. Events with an oppositely-charged pair of muons or electrons together with an isolated photon are selected. The differential cross section as a function of the photon transverse momentum is measured inclusively and exclusively, where the exclusive selection applies a veto on central jets. The observed cross sections are compatible with the expectations of next-to-next-to-leading-order quantum chromodynamics. Limits on anomalous triple gauge couplings of ZZγ and Zγγ are set that improve on previous experimental results obtained with the charged lepton decay modes of the Z boson.

4 data tables

Inclusive fiducial cross sections in bins of pT(gamma) with statistical, systematic, and luminosity uncertainties, respectivley. Results are not divided by bin-widths. The last bin is the cross section for pT(gamma) > 120 GeV. Combined result of electron and muon channels.

Fiducial cross sections with jet-veto in bins of pT(gamma) with statistical, systematic, and luminosity uncertainties, respectivley. Results are not divided by bin-widths. The last bin is the cross section for pT(gamma) > 120 GeV. Combined result of electron and muon channels.

Ratio of fiducial cross section with jet-veto and the inclusive cross section in bins of pT(gamma). The last bin is the cross section for pT(gamma) > 120 GeV. Combined result of electron and muon channels.

More…

Measurement of J/ψ and ψ(2S) Prompt Double-Differential Cross Sections in pp Collisions at $\sqrt{s}$=7  TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.Lett. 114 (2015) 191802, 2015.
Inspire Record 1345023 DOI 10.17182/hepdata.66886

The double-differential cross sections of promptly produced J/psi and psi(2S) mesons are measured in pp collisions at sqrt(s) = 7 TeV, as a function of transverse momentum pt and absolute rapidity abs(y). The analysis uses J/psi and psi(2S) dimuon samples collected by CMS, corresponding to integrated luminosities of 4.55 and 4.90 inverse femtobarns, respectively. The results are based on a two-dimensional analysis of the dimuon invariant mass and decay length, and extend to pt = 120 and 100 GeV for the J/psi and psi(2S), respectively, when integrated over the interval abs(y) < 1.2. The ratio of the psi(2S) to J/psi cross sections is also reported for abs(y) < 1.2, over the range 10 < pt < 100 GeV. These are the highest pt values for which the cross sections and ratio have been measured.

5 data tables

J/psi double-differential cross section times branching fraction assuming unpolarized production as a function of pT and y for 0.0 < |y| < 0.3, 0.3 < |y| < 0.6, 0.6 < |y| < 0.9 and 0.9 < |y| < 1.2.

psi(2S) double-differential cross section times branching fraction assuming unpolarized production as a function of pT and y for 0.0 < |y| < 0.3, 0.3 < |y| < 0.6, 0.6 < |y| < 0.9 and 0.9 < |y| < 1.2.

J/psi double-differential cross section times branching fraction and the corresponding scaling factors to obtain the cross sections for different polarization scenarios (azimuthal polarization parameter in the center of mass helicity frame lambda_theta^HX = +1, -1, +0.1) as a function of pT for |y| < 1.2.

More…

Measurements of the $\Upsilon$(1S), $\Upsilon$(2S), and $\Upsilon$(3S) differential cross sections in pp collisions at $\sqrt{s} =$ 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett. B749 (2015) 14-34, 2015.
Inspire Record 1342266 DOI 10.17182/hepdata.64486
15 data tables

The $p_{\rm T}$ bin width, the weighted mean $p_{\rm T}$ within a bin, and the differential cross section times the dimuon branching fraction for the $\Upsilon$(1S), $\Upsilon$(2S), and $\Upsilon$(3S) with $0 < |y| < 0.6$. The statistical and systematic uncertainties in the differential cross section are given as the percentage of the cross section.

The $p_{\rm T}$ bin width, the weighted mean $p_{\rm T}$ within a bin, and the differential cross section times the dimuon branching fraction for the $\Upsilon$(1S), $\Upsilon$(2S), and $\Upsilon$(3S) with $0.6 < |y| < 1.2$. The statistical and systematic uncertainties in the differential cross section are given as the percentage of the cross section.

The $p_{\rm T}$ bin width, the weighted mean $p_{\rm T}$ within a bin, and the differential cross section times the dimuon branching fraction for the $\Upsilon$(1S), $\Upsilon$(2S), and $\Upsilon$(3S) with $|y| < 1.2$. The statistical and systematic uncertainties in the differential cross section are given as the percentage of the cross section.

More…

Measurements of differential and double-differential Drell-Yan cross sections in proton-proton collisions at 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J. C75 (2015) 147, 2015.
Inspire Record 1332509 DOI 10.17182/hepdata.69869

Measurements of the differential and double-differential Drell–Yan cross sections in the dielectron and dimuon channels are presented. They are based on proton–proton collision data at $\sqrt{s} = 8\,\text {TeV} $ recorded with the CMS detector at the LHC and corresponding to an integrated luminosity of 19.7 $\,\text {fb}^{-1}$ . The measured inclusive cross section in the $\mathrm{Z}$ peak region (60–120 $\,\text {GeV}$ ), obtained from the combination of the dielectron and dimuon channels, is $1138 \pm 8\,\text {(exp)} \pm 25\,\text {(theo)} \pm 30\,\text {(lumi)} \text {\,pb} $ , where the statistical uncertainty is negligible. The differential cross section $\mathrm{d}\sigma /\mathrm{d}{}m$ in the dilepton mass range 15–2000 $\,\text {GeV}$ is measured and corrected to the full phase space. The double-differential cross section $\mathrm{d}^2\sigma /\mathrm{d}{}m\,\mathrm{d}|y |$ is also measured over the mass range 20 to 1500 $\,\text {GeV}$ and absolute dilepton rapidity from 0 to 2.4. In addition, the ratios of the normalized differential cross sections measured at $\sqrt{s} = 7$ and 8 $\,\text {TeV}$ are presented. These measurements are compared to the predictions of perturbative QCD at next-to-leading and next-to-next-to-leading (NNLO) orders using various sets of parton distribution functions (PDFs). The results agree with the NNLO theoretical predictions computed with fewz 3.1 using the CT10 NNLO and NNPDF2.1 NNLO PDFs. The measured double-differential cross section and ratio of normalized differential cross sections are sufficiently precise to constrain the proton PDFs.

15 data tables

Absolute Drell-Yan cross section measurements in the Z peak region (60 < m < 120 GeV). The uncertainties in the measurements include the experimental and theoretical systematic sources and the uncertainty in the integrated luminosity. The statistical component is negligible.

The Drell-Yan differential pre-FSR cross section D(SIG)/DM as measured in the combined dilepton channel for the full phase space. Theoretical uncertainty on acceptance is included.

The Drell-Yan pre-FSR dilepton rapidity distribution D(SIG)/DABS(YRAP) within the detector acceptance, for the mass bin 20-30 GeV, as measured in the combined dilepton channel.

More…

Study of Z production in PbPb and pp collisions at $ \sqrt{s_{\mathrm{NN}}}=2.76 $ TeV in the dimuon and dielectron decay channels

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 1503 (2015) 022, 2015.
Inspire Record 1322726 DOI 10.17182/hepdata.66612
15 data tables

The measured Z boson production cross section in pp collisions as a function of the Z boson pT for the dimuon decay channel in |y|<2.0.

The measured Z boson production cross section in pp collisions as a function of the Z boson pT for the dielectron decay channel in |y|<1.44.

The measured Z boson production cross section in pp collisions as a function of the Z boson rapidity for the dimuon decay channel.

More…

Measurement of Prompt $\psi(2S) \to J/\psi$ Yield Ratios in Pb-Pb and $p-p$ Collisions at $\sqrt {s_{NN}}=$ 2.76  TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.Lett. 113 (2014) 262301, 2014.
Inspire Record 1320775 DOI 10.17182/hepdata.66548

<p>The ratio between the prompt <inline-formula><mml:math display="inline"><mml:mi>ψ</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn>2</mml:mn><mml:mi>S</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math></inline-formula> and <inline-formula><mml:math display="inline"><mml:mi>J</mml:mi><mml:mo stretchy="false">/</mml:mo><mml:mi>ψ</mml:mi></mml:math></inline-formula> yields, reconstructed via their decays into <inline-formula><mml:math display="inline"><mml:msup><mml:mi>μ</mml:mi><mml:mo>+</mml:mo></mml:msup><mml:msup><mml:mi>μ</mml:mi><mml:mo>-</mml:mo></mml:msup></mml:math></inline-formula>, is measured in Pb-Pb and <inline-formula><mml:math display="inline"><mml:mi>p</mml:mi></mml:math></inline-formula>-<inline-formula><mml:math display="inline"><mml:mi>p</mml:mi></mml:math></inline-formula> collisions at <inline-formula><mml:math display="inline"><mml:mrow><mml:msqrt><mml:mrow><mml:msub><mml:mrow><mml:mi>s</mml:mi></mml:mrow><mml:mrow><mml:mi>N</mml:mi><mml:mi>N</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:msqrt><mml:mo>=</mml:mo><mml:mn>2.76</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:mi></mml:mrow></mml:math></inline-formula>. The analysis is based on Pb-Pb and <inline-formula><mml:math display="inline"><mml:mi>p</mml:mi></mml:math></inline-formula>-<inline-formula><mml:math display="inline"><mml:mi>p</mml:mi></mml:math></inline-formula> data samples collected by CMS at the Large Hadron Collider, corresponding to integrated luminosities of <inline-formula><mml:math display="inline"><mml:mrow><mml:mn>150</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>μ</mml:mi><mml:msup><mml:mrow><mml:mi mathvariant="normal">b</mml:mi></mml:mrow><mml:mrow><mml:mo>-</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math></inline-formula> and <inline-formula><mml:math display="inline"><mml:mrow><mml:mn>5.4</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:msup><mml:mrow><mml:mi>pb</mml:mi></mml:mrow><mml:mrow><mml:mo>-</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math></inline-formula>, respectively. The double ratio of measured yields <inline-formula><mml:math display="inline"><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:msub><mml:mrow><mml:mi>N</mml:mi></mml:mrow><mml:mrow><mml:mi>ψ</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn>2</mml:mn><mml:mi>S</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:msub><mml:mo stretchy="false">/</mml:mo><mml:msub><mml:mrow><mml:mi>N</mml:mi></mml:mrow><mml:mrow><mml:mi>J</mml:mi><mml:mo stretchy="false">/</mml:mo><mml:mi>ψ</mml:mi></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mi>Pb</mml:mi><mml:mtext>-</mml:mtext><mml:mi>Pb</mml:mi></mml:mrow></mml:msub><mml:mo stretchy="false">/</mml:mo><mml:mspace linebreak="goodbreak"/><mml:mo stretchy="false">(</mml:mo><mml:msub><mml:mrow><mml:mi>N</mml:mi></mml:mrow><mml:mrow><mml:mi>ψ</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn>2</mml:mn><mml:mi>S</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:msub><mml:mo stretchy="false">/</mml:mo><mml:msub><mml:mrow><mml:mi>N</mml:mi></mml:mrow><mml:mrow><mml:mi>J</mml:mi><mml:mo stretchy="false">/</mml:mo><mml:mi>ψ</mml:mi></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mi>p</mml:mi><mml:mtext/><mml:mtext>-</mml:mtext><mml:mi>p</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math></inline-formula> is computed in three Pb-Pb collision centrality bins and two kinematic ranges: one at midrapidity, <inline-formula><mml:math display="inline"><mml:mrow><mml:mo stretchy="false">|</mml:mo><mml:mi>y</mml:mi><mml:mo stretchy="false">|</mml:mo></mml:mrow><mml:mo>&lt;</mml:mo><mml:mn>1.6</mml:mn></mml:math></inline-formula>, covering the transverse momentum range <inline-formula><mml:math display="inline"><mml:mrow><mml:mn>6.5</mml:mn><mml:mo>&lt;</mml:mo><mml:msub><mml:mrow><mml:mi>p</mml:mi></mml:mrow><mml:mrow><mml:mi>T</mml:mi></mml:mrow></mml:msub><mml:mo>&lt;</mml:mo><mml:mn>30</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>GeV</mml:mi><mml:mo>/</mml:mo><mml:mi>c</mml:mi></mml:mrow></mml:math></inline-formula>, and the other at forward rapidity, <inline-formula><mml:math display="inline"><mml:mn>1.6</mml:mn><mml:mo>&lt;</mml:mo><mml:mrow><mml:mo stretchy="false">|</mml:mo><mml:mi>y</mml:mi><mml:mo stretchy="false">|</mml:mo></mml:mrow><mml:mo>&lt;</mml:mo><mml:mn>2.4</mml:mn></mml:math></inline-formula>, extending to lower <inline-formula><mml:math display="inline"><mml:msub><mml:mi>p</mml:mi><mml:mi>T</mml:mi></mml:msub></mml:math></inline-formula> values, <inline-formula><mml:math display="inline"><mml:mrow><mml:mn>3</mml:mn><mml:mo>&lt;</mml:mo><mml:msub><mml:mrow><mml:mi>p</mml:mi></mml:mrow><mml:mrow><mml:mi>T</mml:mi></mml:mrow></mml:msub><mml:mo>&lt;</mml:mo><mml:mn>30</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>GeV</mml:mi><mml:mo>/</mml:mo><mml:mi>c</mml:mi></mml:mrow></mml:math></inline-formula>. The centrality-integrated double ratio changes from <inline-formula><mml:math display="inline"><mml:mrow><mml:mn>0.45</mml:mn><mml:mo>±</mml:mo><mml:mn>0.13</mml:mn><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mtext>stat</mml:mtext><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mo>±</mml:mo><mml:mn>0.07</mml:mn><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mtext>syst</mml:mtext><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:math></inline-formula> in the first range to <inline-formula><mml:math display="inline"><mml:mn>1.67</mml:mn><mml:mo>±</mml:mo><mml:mn>0.34</mml:mn><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mtext>stat</mml:mtext><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mo>±</mml:mo><mml:mn>0.27</mml:mn><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mtext>syst</mml:mtext><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:math></inline-formula> in the second. This difference is most pronounced in the most central collisions.</p>

4 data tables

Double ratio of measured yields, $(N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{\mathrm{PbPb}} / (N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{pp}$, as a function of centrality, for the midrapidity analysis bin.

Double ratio of measured yields, $(N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{\mathrm{PbPb}} / (N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{pp}$, as a function of centrality, for the forward rapidity analysis bin.

Double ratio of measured yields, $(N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{\mathrm{PbPb}} / (N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{pp}$, integrated over centrality, for the midrapidity and forward rapidity analysis bins.

More…

Measurement of prompt $J/\psi$ pair production in pp collisions at $ \sqrt{s} $ = 7 Tev

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 1409 (2014) 094, 2014.
Inspire Record 1298812 DOI 10.17182/hepdata.64263
3 data tables

Differential cross section D(SIG)/DM(J/PSI J/PSI) in bins of the J/PSI pair invariant mass, M(J/PSI J/PSI).

Differential cross section D(SIG)/DABS(DELTA(YRAP)) in bins of the absolute rapidity difference between J/PSI mesons, ABS(DELTA(YRAP)).

Differential cross section D(SIG)/DPT(J/PSI J/PSI) in bins of the transverse momentum of the J/PSI pair, PT(J/PSI J/PSI).


Measurement of jet multiplicity distributions in $\mathrm {t}\overline{\mathrm {t}}$ production in pp collisions at $\sqrt{s} = 7\,\text {TeV} $

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Eur.Phys.J. C74 (2015) 3014, 2015.
Inspire Record 1290126 DOI 10.17182/hepdata.64426
6 data tables

Normalised differential TOP TOPBAR production cross section as a function of the jet multiplicity for jets with PT(JET) > 30 GeV in the dilepton channel. The statistical and main experimental and model systematic uncertainties are displayed.

Normalised differential TOP TOPBAR production cross section as a function of the jet multiplicity for jets with PT(JET) > 60 GeV in the dilepton channel. The statistical and main experimental and model systematic uncertainties are displayed.

Normalised differential TOP TOPBAR production cross section as a function of the jet multiplicity for jets with PT(JET) > 35 GeV in the lepton+jets channel. The statistical and main experimental and model systematic uncertainties are displayed.

More…

Measurement of the ratio $\mathcal B(t \to Wb)/\mathcal B(t \to Wq)$ in pp collisions at $\sqrt{s}$ = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett. B736 (2014) 33-57, 2014.
Inspire Record 1289223 DOI 10.17182/hepdata.64489

The ratio of the top-quark branching fractions $R = B(t \to Wb)/B(t \to Wq)$, where the denominator includes the sum over all down-type quarks (q = b, s, d), is measured in the $t\bar{t}$ dilepton final state with proton-proton collision data at $\sqrt{s}$ = 8 TeV from an integrated luminosity of 19.7 inverse-femtobarns, collected with the CMS detector. In order to quantify the purity of the signal sample, the cross section is measured by fitting the observed jet multiplicity, thereby constraining the signal and background contributions. By counting the number of b jets per event, an unconstrained value of R = 1.014 $\pm$ 0.003 (stat) $\pm$ 0.032 (syst) is measured, in good agreement with the standard model prediction. A lower limit R greater than 0.955 at the 95% confidence level is obtained after requiring R lower than one, and a lower limit on the Cabibbo-Kobayashi-Maskawa matrix element |$V_tb$| greater than 0.975 is set at 95% confidence level. The result is combined with a previous CMS measurement of the t-channel single-top-quark cross section to determine the top-quark total decay width, $\Gamma_t$ = 1.36 $\pm$ 0.02 (stat)$^{+0.14}_{-0.11}$ (syst) GeV.

3 data tables

The measured TOP TOPBAR production cross section.

The measured ratio of branching fractions, R = BR(TOP --> W BOTTOM) / BR(TOP --> W QUARK) where the denominator includes the sum over all down-type quarks (QUARK = BOTTOM, STRANGE, DOWN). The combined measurement and the individual measurements from the three channels considered are presented.

An indirect measurement of the top-quark total decay width.


Measurement of the production cross sections for a Z boson and one or more b jets in pp collisions at sqrt(s) = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 1406 (2014) 120, 2014.
Inspire Record 1280529 DOI 10.17182/hepdata.64748

The production of a Z boson, decaying into two leptons and produced in association with one or more b jets, is studied using proton-proton collisions delivered by the LHC at a centre-of-mass energy of 7 TeV. The data were recorded in 2011 with the CMS detector and correspond to an integrated luminosity of 5 fb(−1). The Z(ℓℓ) + b-jets cross sections (where ℓℓ = μμ or ee) are measured separately for a Z boson produced with exactly one b jet and with at least two b jets. In addition, a cross section ratio is extracted for a Z boson produced with at least one b jet, relative to a Z boson produced with at least one jet. The measured cross sections are compared to various theoretical predictions, and the data favour the predictions in the five-flavour scheme, where b quarks are assumed massless. The kinematic properties of the reconstructed particles are compared with the predictions from the MadGraph event generator using the pythia parton shower simulation.

4 data tables

The cross section at the particle level for the production of a Z boson with exactly one b-jet.

The cross section at the particle level for the production of a Z boson with at least two b-jets.

The cross section at the particle level for the production of a Z boson with at least one b-jet.

More…

Measurement of the production cross section for a W boson and two b jets in pp collisions at $\sqrt{s}$=7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Lett. B735 (2014) 204-225, 2014.
Inspire Record 1273578 DOI 10.17182/hepdata.65711

The production cross section for a W boson and two b jets is measured using proton-proton collisions at sqrt(s) = 7 TeV in a data sample collected with the CMS experiment at the LHC corresponding to an integrated luminosity of 5.0 inverse femtobarns. The W + b b-bar events are selected in the W to mu nu decay mode by requiring a muon with transverse momentum pt > 25 GeV and pseudorapidity abs(eta) < 2.1, and exactly two b-tagged jets with pt > 25 GeV and abs(eta) < 2.4. The measured W + b b-bar production cross section in the fiducial region, calculated at the level of final-state particles, is sigma(pp to W + b b-bar) x B(W to mu nu) = 0.53 +/- 0.05 (stat.) +/- 0.09 (syst.) +/- 0.06 (theo.) +/- 0.01 (lum.) pb, in agreement with the standard model prediction. In addition, kinematic distributions of the W + b b-bar system are in agreement with the predictions of a simulation using MADGRAPH and PYTHIA.

2 data tables

The measured $W+b\bar{b}$ cross section.

Parameters for theoretical comparison: theoretical $W+b\bar{b}$ cross section from MCFM and the two corrections (additive double parton scattering cross section estimation at the parton jet level, and multiplicative hadronization correction factor $C_{b\rightarrow B}$ ) that need to be applied in this order to it to compare to the observed cross section.


Measurement of the muon charge asymmetry in inclusive $pp \to W+X$ production at $\sqrt s =$ 7 TeV and an improved determination of light parton distribution functions

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Rev. D90 (2014) 032004, 2014.
Inspire Record 1273570 DOI 10.17182/hepdata.65456

Measurements of the muon charge asymmetry in inclusive pp to WX production at sqrt(s) = 7 TeV are presented. The data sample corresponds to an integrated luminosity of 4.7 inverse femtobarns recorded with the CMS detector at the LHC. With a sample of more than twenty million W to mu nu events, the statistical precision is greatly improved in comparison to previous measurements. These new results provide additional constraints on the parton distribution functions of the proton in the range of the Bjorken scaling variable x from 10E-3 to 10E-1. These measurements and the recent CMS measurement of associated W + charm production are used together with the cross sections for inclusive deep inelastic ep scattering at HERA in a next-to-leading-order QCD analysis. The determination of the valence quark distributions is improved, and the strange-quark distribution is probed directly through the leading-order process g + s to W + c in proton-proton collisions at the LHC.

4 data tables

Summary of the final results for muon charge asymmetry $\mathcal{A}$ with the muon $p_{T}>25$ GeV. The first uncertainty is statistical and the second is systematic. The theoretical predictions are obtained using the FEWZ 3.1 MC tool interfaced with the NLO CT10, NNPDF2.3, HERAPDF1.5, and MSTW2008CPdeut PDF sets. The PDF uncertainty is at 68% C.L. The values are expressed as percentages.

Summary of the final results for muon charge asymmetry $\mathcal{A}$ with the muon $p_{T}>35$ GeV. The first uncertainty is statistical and the second is systematic. The theoretical predictions are obtained using the FEWZ 3.1 MC tool interfaced with the NLO CT10, NNPDF2.3, HERAPDF1.5, and MSTW2008CPdeut PDF sets. The PDF uncertainty is at 68% C.L. The values are expressed as percentages.

Covariance matrix (statistical and systematic uncertainties combined) with the muon $p_{T}>25$ GeV. The units are in $10^{-4}$.

More…

Measurement of the differential and double-differential Drell-Yan cross sections in proton-proton collisions at $\sqrt{s} =$ 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 1312 (2013) 030, 2013.
Inspire Record 1262319 DOI 10.17182/hepdata.62207

Measurements of the differential and double-differential Drell-Yan cross sections are presented using an integrated luminosity of 4.5(4.8) inverse femtobarns in the dimuon (dielectron) channel of proton-proton collision data recorded with the CMS detector at the LHC at $\sqrt{s}$ = 7 TeV. The measured inclusive cross section in the Z-peak region (60-120 GeV) is $\sigma(\ell \ell)$ = 986.4 +/- 0.6 (stat.) +/- 5.9 (exp. syst.) +/- 21.7 (th. syst.) +/- 21.7 (lum.) pb for the combination of the dimuon and dielectron channels. Differential cross sections $d\sigma/dm$ for the dimuon, dielectron, and combined channels are measured in the mass range 15 to 1500 GeV and corrected to the full phase space. Results are also presented for the measurement of the double-differential cross section $d^2\sigma/dm d |y|$ in the dimuon channel over the mass range 20 to 1500 GeV and absolute dimuon rapidity from 0 to 2.4. These measurements are compared to the predictions of perturbative QCD calculations at next-to-leading and next-to-next-to-leading orders using various sets of parton distribution functions.

10 data tables

Normalization factors for the cross section measurements from the Z-peak region (60 < M < 120 GeV) with associated uncertainties. The measurements are given in the muon, electron and combined channels. The three systematic uncertainties correspond to experimental, theoretical and luminosity.

The DY cross section measurements for the muon channel normalized to the Z-peak region, pre- and post-FSR, as measured in the full acceptance and for the CMS detector acceptance. The uncertainty indicates the experimental (statistical and systematic) uncertainties summed in quadrature with the theoretical uncertainty resulting from the model-dependent kinematic distributions inside each bin.

The DY cross section measurements for the electron channel normalized to the Z-peak region, pre- and post-FSR, as measured in the full acceptance and for the CMS detector acceptance. The uncertainty indicates the experimental (statistical and systematic) uncertainties summed in quadrature with the theoretical uncertainty resulting from the model-dependent kinematic distributions inside each bin.

More…

Measurement of the prompt $J/\psi$ and $\psi$(2S) polarizations in $pp$ collisions at $\sqrt{s}$ = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Lett. B727 (2013) 381-402, 2013.
Inspire Record 1244128 DOI 10.17182/hepdata.63898

The polarizations of prompt J/psi and psi(2S) mesons are measured in proton-proton collisions at sqrt(s) = 7 TeV, using a dimuon data sample collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 4.9 inverse femtobarns. The prompt J/psi and psi(2S) polarization parameters lambda[theta], lambda[phi], and lambda[theta,phi], as well as the frame-invariant quantity lambda(tilde), are measured from the dimuon decay angular distributions in three different polarization frames. The J/psi results are obtained in the transverse momentum range 14 < pt < 70 GeV, in the rapidity intervals abs(y) < 0.6 and 0.6 < abs(y) < 1.2. The corresponding psi(2S) results cover 14 < pt < 50 GeV and include a third rapidity bin, 1.2 < abs(y) < 1.5. No evidence of large transverse or longitudinal polarizations is seen in these kinematic regions, which extend much beyond those previously explored.

60 data tables

Lambda-Theta in the CS frame for the J/psi as a function of pT for 0.0 < |y| < 0.6.

Lambda-Theta in the CS frame for the J/psi as a function of pT for 0.6 < |y| < 1.2.

Lambda-Phi in the CS frame for the J/psi as a function of pT for 0.0 < |y| < 0.6.

More…

Measurement of the $\Upsilon(1S), \Upsilon(2S)$, and $\Upsilon(3S)$ cross sections in pp collisions at $\sqrt{s}$ = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Lett. B727 (2013) 101-125, 2013.
Inspire Record 1225274 DOI 10.17182/hepdata.60518

The $\Upsilon$(1S), $\Upsilon$(2S), and $\Upsilon$(3S) production cross sections are measured using a data sample corresponding to an integrated luminosity of 35.8 $\pm$ 1.4 inverse picobarns of proton-proton collisions at $\sqrt{s}$ = 7 TeV, collected with the CMS detector at the LHC. The Upsilon resonances are identified through their decays to dimuons. Integrated over the $\Upsilon$ transverse momentum range $p_{t}^{\Upsilon} \lt$ 50GeV and rapidity range |$y^\Upsilon$| $\lt$ 2.4, and assuming unpolarized Upsilon production, the products of the Upsilon production cross sections and dimuon branching fractions are \begin{equation*}\sigma(pp \to \Upsilon(1S) X) . B(\Upsilon(1S) \to \mu^+ \mu^-) = (8.55 \pm 0.05^{+0.56}_{-0.50} \pm 0.34) nb,\end{equation*} \begin{equation*}\sigma(pp \to \Upsilon(2S) X) . B(\Upsilon(2S) \to \mu^+ \mu^-) = (2.21 \pm 0.03^{+0.16}_{-0.14} \pm 0.09) nb,\end{equation*} \begin{equation*}\sigma(pp \to \Upsilon(3S) X) . B(\Upsilon(3S) \to \mu^+ \mu^-) = (1.11 \pm 0.02^{+0.10}_{-0.08} \pm 0.04) nb, \end{equation*} where the first uncertainty is statistical, the second is systematic, and the third is from the uncertainty in the integrated luminosity. The differential cross sections in bins of transverse momentum and rapidity, and the cross section ratios are presented. Cross section measurements performed within a restricted muon kinematic range and not corrected for acceptance are also provided. These latter measurements are independent of Upsilon polarization assumptions. The results are compared to theoretical predictions and previous measurements.

31 data tables

The fiducial and acceptance-corrected cross sections for PT<50 GeV/c and |rapidity|<2.4.

The fiducial and acceptance corrected UPSI(1S) production cross sections (times di-muon branching ratio) as a function of PT for the |rapidity| range < 2.4. Note these are integrated cross sections and the acceptance-corrected cross sections assume the UPSI(1S) are unpolarized with the variations due to the 4 extreme polarization scenarios shown in the last 4 columns. The fiducial cross sections do not need to make any assumptions on the polarizations scenarios. The luminosity uncertainty of 4% is not included in the systematic errors.

The fiducial and acceptance corrected UPSI(2S) production cross sections (times di-muon branching ratio) as a function of PT for the |rapidity| range < 2.4. Note these are integrated cross sections and the acceptance-corrected cross sections assume the UPSI(2S) are unpolarized with the variations due to the 4 extreme polarization scenarios shown in the last 4 columns. The fiducial cross sections do not need to make any assumptions on the polarizations scenarios. The luminosity uncertainty of 4% is not included in the systematic errors.

More…

Search for heavy neutrinos and W[R] bosons with right-handed couplings in a left-right symmetric model in pp collisions at sqrt(s) = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Rev.Lett. 109 (2012) 261802, 2012.
Inspire Record 1189986 DOI 10.17182/hepdata.21263

Results are presented from a search for heavy, right-handed muon neutrinos, N[mu], and right-handed W[R] bosons, which arise in the left-right symmetric extensions of the standard model. The analysis is based on a 5.0 inverse femtobarn sample of proton-proton collisions at a center-of-mass energy of 7 TeV, collected by the CMS detector at the Large Hadron Collider. No evidence is observed for an excess of events over the standard model expectation. For models with exact left-right symmetry, heavy right-handed neutrinos are excluded at 95% confidence level for a range of neutrino masses below the W[R] mass, dependent on the value of M(W[R]). The excluded region in the two-dimensional (M(W[R]), M(N[mu])) mass plane extends to M(W[R]) = 2.5 TeV.

1 data table

The 95% confidence level observed (Obs.) and expected (Exp.) exclusion limits (in fb) on the WR production cross section times branching fraction for WR -> mu mu j j as a function of WR (mWR) and Nmu (mNmu) mass (in GeV) for 800 GeV <= mWR <= 2500 GeV. The 68% and 95% uncertainty bands for the expected limit (Exp. 68% up/down and Exp. 95% up/down, respectively), given in fb, are also included for each (mWR,mNmu) entry.


Measurement of the cross section for production of $b b^-$ bar $X$, decaying to muons in $pp$ collisions at $\sqrt{s}=7$ TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 1206 (2012) 110, 2012.
Inspire Record 1093951 DOI 10.17182/hepdata.58906

A measurement of the inclusive cross section for the process pp to b b-bar X to muon muon X' at sqrt(s) = 7 TeV is presented, based on a data sample corresponding to an integrated luminosity of 27.9 inverse picobarns collected by the CMS experiment at the LHC. By selecting pairs of muons each with pseudorapidity abs(eta)<2.1, the value of the cross section for pp to b b-bar X to muon muon X' is found to be 26.4 +/- 0.1 (stat.) +/- 2.4 (syst.) +/- 1.1 (lumi.) nb is obtained for muons with transverse momentum greater than 4 GeV, and 5.12 +/- 0.03 (stat.) +/- 0.48 (syst.) +/- 0.20 (lumi.) nb for transverse momenta greater than 6 GeV. These results are compared to QCD predictions at leading and next-to-leading orders.

1 data table

The measured integrated cross sections. The second systematic error is due to the luminosity uncertainty.


$J/\psi$ and $\psi_{2S}$ production in $pp$ collisions at $\sqrt{s}=7$ TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 1202 (2012) 011, 2012.
Inspire Record 944755 DOI 10.17182/hepdata.58303

A measurement of the J/psi and psi(2S) production cross sections in pp collisions at sqrt(s)=7 TeV with the CMS experiment at the LHC is presented. The data sample corresponds to an integrated luminosity of 37 inverse picobarns. Using a fit to the invariant mass and decay length distributions, production cross sections have been measured separately for prompt and non-prompt charmonium states, as a function of the meson transverse momentum in several rapidity ranges. In addition, cross sections restricted to the acceptance of the CMS detector are given, which are not affected by the polarization of the charmonium states. The ratio of the differential production cross sections of the two states, where systematic uncertainties largely cancel, is also determined. The branching fraction of the inclusive B to psi(2S) X decay is extracted from the ratio of the non-prompt cross sections to be: BR(B to psi(2S) X) = (3.08 +/- 0.12(stat.+syst.) +/- 0.13(theor.) +/- 0.42(BR[PDG])) 10^-3

36 data tables

The (unpolarised) acceptance corrected J/PSI cross section times branching ratio to MU+ MU- for (PROMPT) and NON-PROMPT) production in the |rapidity| bin 0.0-0.9.

The (unpolarised) acceptance corrected J/PSI cross section times branching ratio to MU+ MU- for (PROMPT) and NON-PROMPT) production in the |rapidity| bin 0.9-1.2.

The (unpolarised) acceptance corrected J/PSI cross section times branching ratio to MU+ MU- for (PROMPT) and NON-PROMPT) production in the |rapidity| bin 1.2-1.6.

More…