Search for heavy charged long-lived particles in proton-proton collisions at $\sqrt{s} = 13$ TeV using an ionisation measurement with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 788 (2019) 96-116, 2019.
Inspire Record 1686832 DOI 10.17182/hepdata.83962

This Letter presents a search for heavy charged long-lived particles produced in proton-proton collisions at $\sqrt{s} = 13$ TeV at the LHC using a data sample corresponding to an integrated luminosity of 36.1 fb$^{-1}$ collected by the ATLAS experiment in 2015 and 2016. These particles are expected to travel with a velocity significantly below the speed of light, and therefore have a specific ionisation higher than any high-momentum Standard Model particle of unit charge. The pixel subsystem of the ATLAS detector is used in this search to measure the ionisation energy loss of all reconstructed charged particles which traverse the pixel detector. Results are interpreted assuming the pair production of $R$-hadrons as composite colourless states of a long-lived gluino and Standard Model partons. No significant deviation from Standard Model background expectations is observed, and lifetime-dependent upper limits on $R$-hadron production cross-sections and gluino masses are set, assuming the gluino always decays in two quarks and a stable neutralino. $R$-hadrons with lifetimes above 1.0 ns are excluded at the 95% confidence level, with lower limits on the gluino mass ranging between 1290 GeV and 2060 GeV. In the case of stable $R$-hadrons, the lower limit on the gluino mass at the 95% confidence level is 1890 GeV.

26 data tables

The number of events in each CR, VR, and SR for the predicted background, for the expected contribution from the signal model normalised to $36.1$ fb$^{-1}$, and in the observed data. The predicted background includes the statistical and systematic uncertainties, respectively. The uncertainty in the signal yield includes all systematic uncertainties except that in the theoretical cross-section.

The number of events in each CR, VR, and SR for the predicted background, for the expected contribution from the signal model normalised to $36.1$ fb$^{-1}$, and in the observed data. The predicted background includes the statistical and systematic uncertainties, respectively. The uncertainty in the signal yield includes all systematic uncertainties except that in the theoretical cross-section.

Expected number of $R$-hadron signal events at different stages of the selection, normalised to $36.1$ fb$^{-1}$. Shown for three different signal points is the number of events expected and the number of events expected in which the selected track has been matched to a generated $R$-hadron. If the gluino decays, it decays to a 100 GeV $\tilde{\chi}^{0}$ and SM quarks.

More…

Version 2
Measurements of top-quark pair differential cross-sections in the lepton+jets channel in $pp$ collisions at $\sqrt{s}=8$ TeV using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 76 (2016) 538, 2016.
Inspire Record 1404878 DOI 10.17182/hepdata.84154

Measurements of normalized differential cross-sections of top-quark pair production are presented as a function of the top-quark, $t\bar{t}$ system and event-level kinematic observables in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=8$ TeV}. The observables have been chosen to emphasize the $t\bar{t}$ production process and to be sensitive to effects of initial- and final-state radiation, to the different parton distribution functions, and to non-resonant processes and higher-order corrections. The dataset corresponds to an integrated luminosity of 20.3 fb$^{-1}$, recorded in 2012 with the ATLAS detector at the CERN Large Hadron Collider. Events are selected in the lepton+jets channel, requiring exactly one charged lepton and at least four jets with at least two of the jets tagged as originating from a $b$-quark. The measured spectra are corrected for detector effects and are compared to several Monte Carlo simulations. The results are in fair agreement with the predictions over a wide kinematic range. Nevertheless, most generators predict a harder top-quark transverse momentum distribution at high values than what is observed in the data. Predictions beyond NLO accuracy improve the agreement with data at high top-quark transverse momenta. Using the current settings and parton distribution functions, the rapidity distributions are not well modelled by any generator under consideration. However, the level of agreement is improved when more recent sets of parton distribution functions are used.

236 data tables

Fiducial phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system invariant mass $m^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.

Fiducial phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system invariant mass $m^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.

Fiducial phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system transverse momentum $p_{T}^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.

More…

Version 2
Measurement of the production cross section of three isolated photons in $pp$ collisions at $\sqrt{s}$ = 8 TeV using the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 781 (2018) 55-76, 2018.
Inspire Record 1644367 DOI 10.17182/hepdata.80511

A measurement of the production of three isolated photons in proton-proton collisions at a centre-of-mass energy $\sqrt{s}$ = 8 TeV is reported. The results are based on an integrated luminosity of 20.2 fb$^{-1}$ collected with the ATLAS detector at the LHC. The differential cross sections are measured as functions of the transverse energy of each photon, the difference in azimuthal angle and in pseudorapidity between pairs of photons, the invariant mass of pairs of photons, and the invariant mass of the triphoton system. A measurement of the inclusive fiducial cross section is also reported. Next-to-leading-order perturbative QCD predictions are compared to the cross-section measurements. The predictions underestimate the measurement of the inclusive fiducial cross section and the differential measurements at low photon transverse energies and invariant masses. They provide adequate descriptions of the measurements at high values of the photon transverse energies, invariant mass of pairs of photons, and invariant mass of the triphoton system.

4 data tables

The three isolated photons cross section with systematic and statistical uncertainties as a function of ET(Photon1).

The three isolated photons cross section with systematic and statistical uncertainties as a function of ET(Photon2).

The three isolated photons cross section with systematic and statistical uncertainties as a function of ET(Photon3).

More…

Search for resonances in the mass distribution of jet pairs with one or two jets identified as $b$-jets in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 98 (2018) 032016, 2018.
Inspire Record 1674532 DOI 10.17182/hepdata.83179

A search for new resonances decaying into jets containing b-hadrons in $pp$ collisions with the ATLAS detector at the LHC is presented in the dijet mass range from 0.57 TeV to 7 TeV. The dataset corresponds to an integrated luminosity of up to 36.1 fb$^{-1}$ collected in 2015 and 2016 at $\sqrt{s} = 13$ TeV. No evidence of a significant excess of events above the smooth background shape is found. Upper cross-section limits and lower limits on the corresponding signal mass parameters for several types of signal hypotheses are provided at 95% CL. In addition, 95% CL upper limits are set on the cross-sections for new processes that would produce Gaussian-shaped signals in the di-b-jet mass distributions.

26 data tables

The per-event b-tagging efficiencies after the event selection, as a function of the reconstructed invariant mass, for both single b-tagged and double b-tagged categories. The efficiencies are shown for simulated event samples corresponding to seven different b and Z' resonance masses in the high-mass region.

The per-event b-tagging efficiencies after the event selection, as a function of the reconstructed invariant mass, for double b-tagged category. The efficiencies are shown for simulated event samples corresponding to four different Z' resonance masses in the low-mass region. The efficiencies of identifying an event with two b-jets at trigger level only (Online) and when requiring offline confirmation (Online+offline) are shown.

Dijet mass spectra after the background only fit with the background prediction in the inclusive 1-b-tag high-mass region.

More…

Measurements of differential cross sections of top quark pair production in association with jets in ${pp}$ collisions at $\sqrt{s}=13$ TeV using the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 10 (2018) 159, 2018.
Inspire Record 1656578 DOI 10.17182/hepdata.81950

Measurements of differential cross sections of top quark pair production in association with jets by the ATLAS experiment at the LHC are presented. The measurements are performed as functions of the top quark transverse momentum, the transverse momentum of the top quark-antitop quark system and the out-of-plane transverse momentum using data from $pp$ collisions at $\sqrt{s}=13$ TeV collected by the ATLAS detector at the LHC in 2015 and corresponding to an integrated luminosity of 3.2 fb$^{-1}$. The top quark pair events are selected in the lepton (electron or muon) + jets channel. The measured cross sections, which are compared to several predictions, allow a detailed study of top quark production.

115 data tables

Statistical correlation matrix between |$p_{out}^{t\bar{t}}$| in the 4-jet exclusive configuration and |$p_{out}^{t\bar{t}}$| in the 4-jet exclusive configuration, obtained through the Bootstrap Method.

Statistical correlation matrix between |$p_{out}^{t\bar{t}}$| in the 4-jet exclusive configuration and $p_{T}^{t,had}$ in the 4-jet exclusive configuration, obtained through the Bootstrap Method.

Statistical correlation matrix between |$p_{out}^{t\bar{t}}$| in the 4-jet exclusive configuration and $p_{T}^{t\bar{t}}$ in the 4-jet exclusive configuration, obtained through the Bootstrap Method.

More…

Version 3
A search for $B-L$ $R$-parity-violating top squarks in $\sqrt{s} = 13$ TeV $pp$ collisions with the ATLAS experiment

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 97 (2018) 032003, 2018.
Inspire Record 1630899 DOI 10.17182/hepdata.78376

A search is presented for the direct pair production of the stop, the supersymmetric partner of the top quark, that decays through an $R$-parity-violating coupling to a final state with two leptons and two jets, at least one of which is identified as a $b$-jet. The dataset corresponds to an integrated luminosity of 36.1 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of $\sqrt{s} = 13$ TeV, collected in 2015 and 2016 by the ATLAS detector at the LHC. No significant excess is observed over the Standard Model background, and exclusion limits are set on stop pair production at a 95% confidence level. Lower limits on the stop mass are set between 600 GeV and 1.5 TeV for branching ratios above 10% for decays to an electron or muon and a $b$-quark.

212 data tables

Signal acceptance (in %) in the (BRe,BRtau) plane for a 800 GeV stop, for the SR800 signal region.

Expected exclusion limit contour in the (BRe,BRtau) plane for a 600 GeV stop. All limits are computed at 95% CL.

Expected exclusion limit contour in the (BRe,BRtau) plane for a 600 GeV stop. All limits are computed at 95% CL.

More…

Search for new phenomena using the invariant mass distribution of same-flavour opposite-sign dilepton pairs in events with missing transverse momentum in $\sqrt{s}=13$ TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 78 (2018) 625, 2018.
Inspire Record 1675352 DOI 10.17182/hepdata.81726

A search for new phenomena in final states containing an $e^+e^-$ or $\mu^+\mu^-$ pair, jets, and large missing transverse momentum is presented. This analysis makes use of proton--proton collision data with an integrated luminosity of $36.1 \; \mathrm{fb}^{-1}$, collected during 2015 and 2016 at a centre-of-mass energy $\sqrt{s}$ = 13 TeV with the ATLAS detector at the Large Hadron Collider. The search targets the pair production of supersymmetric coloured particles (squarks or gluinos) and their decays into final states containing an $e^+e^-$ or $\mu^+\mu^-$ pair and the lightest neutralino ($\tilde{\chi}_1^0$) via one of two next-to-lightest neutralino ($\tilde{\chi}_2^0$) decay mechanisms: $\tilde{\chi}_2^0 \rightarrow Z \tilde{\chi}_1^0$, where the $Z$ boson decays leptonically leading to a peak in the dilepton invariant mass distribution around the $Z$ boson mass; and $\tilde{\chi}_2^0 \rightarrow \ell^+\ell^- \tilde{\chi}_1^0$ with no intermediate $\ell^+\ell^-$ resonance, yielding a kinematic endpoint in the dilepton invariant mass spectrum. The data are found to be consistent with the Standard Model expectation. Results are interpreted using simplified models, and exclude gluinos and squarks with masses as large as 1.85 TeV and 1.3 TeV at 95% confidence level, respectively.

43 data tables

Observed and expected dilepton mass distributions, with the bin boundaries considered for the interpretation, in SR-low. All statistical and systematic uncertainties of the expected background are included in the hatched band. An example signal from the slepton model with m(gluino) = 1200 GeV and m(neutralino1) = 900 GeV is overlaid.

Observed and expected dilepton mass distributions, with the bin boundaries considered for the interpretation, in SR-med. All statistical and systematic uncertainties of the expected background are included in the hatched band. An example signal from the slepton model with m(gluino) = 1600 GeV and m(neutralino1) = 900 GeV, and from an on-$Z$ model with m(gluino) = 1640 GeV and m(neutralino1) = 1160 GeV, is overlaid.

Observed and expected dilepton mass distributions, with the bin boundaries considered for the interpretation, in SR-high. All statistical and systematic uncertainties of the expected background are included in the hatched band. An example signal from the slepton model with m(gluino) = 1800 GeV and m(neutralino1) = 500 GeV, and from an on-$Z$ model with m(gluino) = 1650 GeV and m(neutralino1) = 550 GeV, is overlaid.

More…

Version 3
Search for supersymmetry in final states with charm jets and missing transverse momentum in 13 TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 09 (2018) 050, 2018.
Inspire Record 1672099 DOI 10.17182/hepdata.83011

A search for supersymmetric partners of top quarks decaying as $\tilde{t}_1\to c\tilde\chi^0_1$ and supersymmetric partners of charm quarks decaying as $\tilde{c}_1\to c\tilde\chi^0_1$, where $\tilde\chi^0_1$ is the lightest neutralino, is presented. The search uses 36.1 ${\rm fb}^{-1}$ $pp$ collision data at a centre-of-mass energy of 13 TeV collected by the ATLAS experiment at the Large Hadron Collider and is performed in final states with jets identified as containing charm hadrons. Assuming a 100% branching ratio to $c\tilde\chi^0_1$, top and charm squarks with masses up to 850 GeV are excluded at 95% confidence level for a massless lightest neutralino. For $m_{\tilde{t}_1,\tilde{c}_1}-m_{\tilde\chi^0_1}

132 data tables

Acceptance for best expected CLS SR in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.

Acceptance for SR1 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.

Acceptance for SR1 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.

More…

Version 2
Search for supersymmetry in events with $b$-tagged jets and missing transverse momentum in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 11 (2017) 195, 2017.
Inspire Record 1620694 DOI 10.17182/hepdata.79165

A search for the supersymmetric partners of the Standard Model bottom and top quarks is presented. The search uses 36.1 fb$^{-1}$ of $pp$ collision data at $\sqrt{s}=13$ TeV collected by the ATLAS experiment at the Large Hadron Collider. Direct production of pairs of bottom and top squarks ($\tilde{b}_{1}$ and $\tilde{t}_{1}$) is searched for in final states with $b$-tagged jets and missing transverse momentum. Distinctive selections are defined with either no charged leptons (electrons or muons) in the final state, or one charged lepton. The zero-lepton selection targets models in which the $\tilde{b}_{1}$ is the lightest squark and decays via $\tilde{b}_{1} \rightarrow b \tilde{\chi}^{0}_{1}$, where $\tilde{\chi}^{0}_{1}$ is the lightest neutralino. The one-lepton final state targets models where bottom or top squarks are produced and can decay into multiple channels, $\tilde{b}_{1} \rightarrow b \tilde{\chi}^{0}_{1}$ and $\tilde{b}_{1} \rightarrow t \tilde{\chi}^{\pm}_{1}$, or $\tilde{t}_{1} \rightarrow t \tilde{\chi}^{0}_{1}$ and $\tilde{t}_{1} \rightarrow b \tilde{\chi}^{\pm}_{1}$, where $\tilde{\chi}^{\pm}_{1}$ is the lightest chargino and the mass difference $m_{\tilde{\chi}^{\pm}_{1}}- m_{\tilde{\chi}^{0}_{1}}$ is set to 1 GeV. No excess above the expected Standard Model background is observed. Exclusion limits at 95\% confidence level on the mass of third-generation squarks are derived in various supersymmetry-inspired simplified models.

202 data tables

- - - - - - - - - - - - - - - - - - - - <br/><b>Acceptance:</b><br/><i>symmetric:</i> <a href="79165?version=1&table=Acceptance1">b0L-SRA350</a> <a href="79165?version=1&table=Acceptance2">b0L-SRA450</a> <a href="79165?version=1&table=Acceptance3">b0L-SRA550</a> <a href="79165?version=1&table=Acceptance4">b0L-SRB</a> <a href="79165?version=1&table=Acceptance5">b0L-SRC</a> <a href="79165?version=1&table=Acceptance6">b0L-best</a><br/><i>asymmetric:</i> <a href="79165?version=1&table=Acceptance7">b1L-SRA300-2j</a> <a href="79165?version=1&table=Acceptance8">b1L-SRA450</a> <a href="79165?version=1&table=Acceptance9">b1L-SRA600</a> <a href="79165?version=1&table=Acceptance10">b1L-SRA750</a> <a href="79165?version=1&table=Acceptance11">b1L-SRB</a> <a href="79165?version=1&table=Acceptance12">b1L-best</a><br/><br/><b>Efficiency:</b><br/><i>symmetric:</i> <a href="79165?version=1&table=Efficiency1">b0L-SRA350</a> <a href="79165?version=1&table=Efficiency2">b0L-SRA450</a> <a href="79165?version=1&table=Efficiency3">b0L-SRA550</a> <a href="79165?version=1&table=Efficiency4">b0L-SRB</a> <a href="79165?version=1&table=Efficiency5">b0L-SRC</a> <a href="79165?version=1&table=Efficiency6">b0L-best</a><br/><i>asymmetric:</i> <a href="79165?version=1&table=Efficiency7">b1L-SRA300-2j</a> <a href="79165?version=1&table=Efficiency8">b1L-SRA450</a> <a href="79165?version=1&table=Efficiency9">b1L-SRA600</a> <a href="79165?version=1&table=Efficiency10">b1L-SRA750</a> <a href="79165?version=1&table=Efficiency11">b1L-SRB</a> <a href="79165?version=1&table=Efficiency12">b1L-best</a><br/><br/><b>Best SR Mapping:</b><br/><i>symmetric:</i> <a href="79165?version=1&table=BestSR4">b0L</a><br/><i>asymmetric:</i> <a href="79165?version=1&table=BestSR1">b1L</a> <a href="79165?version=1&table=BestSR2">b0L</a> <a href="79165?version=1&table=BestSR3">combined</a><br/><br/><b>Exclusion Contour:</b><br/><i>symmetric:</i> b0L-SRA350&nbsp;<a href="79165?version=1&table=Contour1">exp</a>&nbsp;<a href="79165?version=1&table=Contour2">obs</a> b0L-SRA450&nbsp;<a href="79165?version=1&table=Contour5">exp</a>&nbsp;<a href="79165?version=1&table=Contour6">obs</a> b0L-SRA550&nbsp;<a href="79165?version=1&table=Contour9">exp</a>&nbsp;<a href="79165?version=1&table=Contour10">obs</a> b0L-SRB&nbsp;<a href="79165?version=1&table=Contour11">exp</a>&nbsp;<a href="79165?version=1&table=Contour12">obs</a> b0L-SRC&nbsp;<a href="79165?version=1&table=Contour15">exp</a>&nbsp;<a href="79165?version=1&table=Contour16">obs</a> b0L-best&nbsp;<a href="79165?version=1&table=Contour17">exp</a>&nbsp;<a href="79165?version=1&table=Contour18">obs</a><br/><i>asymmetric:</i> b0L-SRA350&nbsp;<a href="79165?version=1&table=Contour3">exp</a>&nbsp;<a href="79165?version=1&table=Contour4">obs</a> b0L-SRA450&nbsp;<a href="79165?version=1&table=Contour7">exp</a>&nbsp;<a href="79165?version=1&table=Contour8">obs</a> b0L-SRB&nbsp;<a href="79165?version=1&table=Contour13">exp</a>&nbsp;<a href="79165?version=1&table=Contour14">obs</a> b0L-best&nbsp;<a href="79165?version=1&table=Contour19">exp</a>&nbsp;<a href="79165?version=1&table=Contour20">obs</a> b1L-SRA300-2j&nbsp;<a href="79165?version=1&table=Contour21">exp</a>&nbsp;<a href="79165?version=1&table=Contour22">obs</a> b1L-SRA450&nbsp;<a href="79165?version=1&table=Contour23">exp</a>&nbsp;<a href="79165?version=1&table=Contour24">obs</a> b1L-SRA600&nbsp;<a href="79165?version=1&table=Contour25">exp</a>&nbsp;<a href="79165?version=1&table=Contour26">obs</a> b1L-SRA750&nbsp;<a href="79165?version=1&table=Contour27">exp</a>&nbsp;<a href="79165?version=1&table=Contour28">obs</a> b1L-SRB&nbsp;<a href="79165?version=1&table=Contour29">exp</a>&nbsp;<a href="79165?version=1&table=Contour30">obs</a> b1L-best&nbsp;<a href="79165?version=1&table=Contour31">exp</a>&nbsp;<a href="79165?version=1&table=Contour32">obs</a> A-LowMass&nbsp;<a href="79165?version=1&table=Contour33">exp</a>&nbsp;<a href="79165?version=1&table=Contour34">obs</a> A-HighMass&nbsp;<a href="79165?version=1&table=Contour35">exp</a>&nbsp;<a href="79165?version=1&table=Contour36">obs</a> B combination&nbsp;<a href="79165?version=1&table=Contour37">exp</a>&nbsp;<a href="79165?version=1&table=Contour38">obs</a> Best combination&nbsp;<a href="79165?version=1&table=Contour39">exp</a>&nbsp;<a href="79165?version=1&table=Contour40">obs</a><br/><br/><b>SR Distribution:</b><br/><a href="79165?version=1&table=SRdistribution1">b0L-SRA</a>: $m_{\mathrm{CT}}$ <a href="79165?version=1&table=SRdistribution2">b0L-SRB</a>: $\mathrm{min[m_{T}(jet_{1-4}, E_{T}^{miss})]}$ <a href="79165?version=1&table=SRdistribution3">b0L-SRC</a>: ${\cal A}$ <a href="79165?version=1&table=SRdistribution4">b1L-SRA300-2j</a>: $\mathrm{m_{bb}}$ <a href="79165?version=1&table=SRdistribution5">b1L-SRA</a>: $\mathrm{m_{eff}}$ <a href="79165?version=1&table=SRdistribution6">b1L-SRB</a>: $\mathrm{m_{T}}$<br/><br/><b>Cross section upper limit:</b><br/><i>symmetric:</i> <a href="79165?version=1&table=Limitoncrosssection1">b0L-best</a> <a href="79165?version=1&table=Limitoncrosssection2">b0L-SRA350</a> <a href="79165?version=1&table=Limitoncrosssection3">b0L-SRA450</a> <a href="79165?version=1&table=Limitoncrosssection4">b0L-SRA550</a> <a href="79165?version=1&table=Limitoncrosssection5">b0L-SRB</a> <a href="79165?version=1&table=Limitoncrosssection6">b0L-SRC</a><br/><i>asymmetric:</i> <a href="79165?version=1&table=Limitoncrosssection7">b0L-best</a> <a href="79165?version=1&table=Limitoncrosssection8">b0L-SRA350</a> <a href="79165?version=1&table=Limitoncrosssection9">b0L-SRA450</a> <a href="79165?version=1&table=Limitoncrosssection10">b0L-SRB</a> <a href="79165?version=1&table=Limitoncrosssection11">b1L-best</a> <a href="79165?version=1&table=Limitoncrosssection12">b1L-SRA300-2j</a> <a href="79165?version=1&table=Limitoncrosssection13">b1L-SRA450</a> <a href="79165?version=1&table=Limitoncrosssection14">b1L-SRA600</a> <a href="79165?version=1&table=Limitoncrosssection15">b1L-SRA750</a> <a href="79165?version=1&table=Limitoncrosssection16">b1L-SRB</a> <a href="79165?version=1&table=Limitoncrosssection17">best combination</a> <a href="79165?version=1&table=Limitoncrosssection18">A-LowMass</a> <a href="79165?version=1&table=Limitoncrosssection19">A-HighMass</a> <a href="79165?version=1&table=Limitoncrosssection20">B combination</a><br/><br/><b>Cutflow:</b><br/><i>symmetric:</i> <a href="79165?version=1&table=CutflowTable1">b0L-SRA (1 TeV, 1 GeV)</a> <a href="79165?version=1&table=CutflowTable2">b0L-SRB (700 GeV, 450 GeV)</a> <a href="79165?version=1&table=CutflowTable3">b0L-SRC (450 GeV, 430 GeV)</a><br/><i>mixed:</i> <a href="79165?version=1&table=CutflowTable4">b1L-SRA (700 GeV, 300 GeV)</a> <a href="79165?version=1&table=CutflowTable5">b1L-SRA300-2j (700 GeV, 300 GeV)</a> <a href="79165?version=1&table=CutflowTable6">b0L-SRA (700 GeV, 300 GeV)</a><br/><br/><b>Truth Code</b> and <b>SLHA Files</b> for the cutflows are available under "Resources" (purple button on the left)

- - - - - - - - - - - - - - - - - - - - <br/><b>Acceptance:</b><br/><i>symmetric:</i> <a href="79165?version=1&table=Acceptance1">b0L-SRA350</a> <a href="79165?version=1&table=Acceptance2">b0L-SRA450</a> <a href="79165?version=1&table=Acceptance3">b0L-SRA550</a> <a href="79165?version=1&table=Acceptance4">b0L-SRB</a> <a href="79165?version=1&table=Acceptance5">b0L-SRC</a> <a href="79165?version=1&table=Acceptance6">b0L-best</a><br/><i>asymmetric:</i> <a href="79165?version=1&table=Acceptance7">b1L-SRA300-2j</a> <a href="79165?version=1&table=Acceptance8">b1L-SRA450</a> <a href="79165?version=1&table=Acceptance9">b1L-SRA600</a> <a href="79165?version=1&table=Acceptance10">b1L-SRA750</a> <a href="79165?version=1&table=Acceptance11">b1L-SRB</a> <a href="79165?version=1&table=Acceptance12">b1L-best</a><br/><br/><b>Efficiency:</b><br/><i>symmetric:</i> <a href="79165?version=1&table=Efficiency1">b0L-SRA350</a> <a href="79165?version=1&table=Efficiency2">b0L-SRA450</a> <a href="79165?version=1&table=Efficiency3">b0L-SRA550</a> <a href="79165?version=1&table=Efficiency4">b0L-SRB</a> <a href="79165?version=1&table=Efficiency5">b0L-SRC</a> <a href="79165?version=1&table=Efficiency6">b0L-best</a><br/><i>asymmetric:</i> <a href="79165?version=1&table=Efficiency7">b1L-SRA300-2j</a> <a href="79165?version=1&table=Efficiency8">b1L-SRA450</a> <a href="79165?version=1&table=Efficiency9">b1L-SRA600</a> <a href="79165?version=1&table=Efficiency10">b1L-SRA750</a> <a href="79165?version=1&table=Efficiency11">b1L-SRB</a> <a href="79165?version=1&table=Efficiency12">b1L-best</a><br/><br/><b>Best SR Mapping:</b><br/><i>symmetric:</i> <a href="79165?version=1&table=BestSR4">b0L</a><br/><i>asymmetric:</i> <a href="79165?version=1&table=BestSR1">b1L</a> <a href="79165?version=1&table=BestSR2">b0L</a> <a href="79165?version=1&table=BestSR3">combined</a><br/><br/><b>Exclusion Contour:</b><br/><i>symmetric:</i> b0L-SRA350&nbsp;<a href="79165?version=1&table=Contour1">exp</a>&nbsp;<a href="79165?version=1&table=Contour2">obs</a> b0L-SRA450&nbsp;<a href="79165?version=1&table=Contour5">exp</a>&nbsp;<a href="79165?version=1&table=Contour6">obs</a> b0L-SRA550&nbsp;<a href="79165?version=1&table=Contour9">exp</a>&nbsp;<a href="79165?version=1&table=Contour10">obs</a> b0L-SRB&nbsp;<a href="79165?version=1&table=Contour11">exp</a>&nbsp;<a href="79165?version=1&table=Contour12">obs</a> b0L-SRC&nbsp;<a href="79165?version=1&table=Contour15">exp</a>&nbsp;<a href="79165?version=1&table=Contour16">obs</a> b0L-best&nbsp;<a href="79165?version=1&table=Contour17">exp</a>&nbsp;<a href="79165?version=1&table=Contour18">obs</a><br/><i>asymmetric:</i> b0L-SRA350&nbsp;<a href="79165?version=1&table=Contour3">exp</a>&nbsp;<a href="79165?version=1&table=Contour4">obs</a> b0L-SRA450&nbsp;<a href="79165?version=1&table=Contour7">exp</a>&nbsp;<a href="79165?version=1&table=Contour8">obs</a> b0L-SRB&nbsp;<a href="79165?version=1&table=Contour13">exp</a>&nbsp;<a href="79165?version=1&table=Contour14">obs</a> b0L-best&nbsp;<a href="79165?version=1&table=Contour19">exp</a>&nbsp;<a href="79165?version=1&table=Contour20">obs</a> b1L-SRA300-2j&nbsp;<a href="79165?version=1&table=Contour21">exp</a>&nbsp;<a href="79165?version=1&table=Contour22">obs</a> b1L-SRA450&nbsp;<a href="79165?version=1&table=Contour23">exp</a>&nbsp;<a href="79165?version=1&table=Contour24">obs</a> b1L-SRA600&nbsp;<a href="79165?version=1&table=Contour25">exp</a>&nbsp;<a href="79165?version=1&table=Contour26">obs</a> b1L-SRA750&nbsp;<a href="79165?version=1&table=Contour27">exp</a>&nbsp;<a href="79165?version=1&table=Contour28">obs</a> b1L-SRB&nbsp;<a href="79165?version=1&table=Contour29">exp</a>&nbsp;<a href="79165?version=1&table=Contour30">obs</a> b1L-best&nbsp;<a href="79165?version=1&table=Contour31">exp</a>&nbsp;<a href="79165?version=1&table=Contour32">obs</a> A-LowMass&nbsp;<a href="79165?version=1&table=Contour33">exp</a>&nbsp;<a href="79165?version=1&table=Contour34">obs</a> A-HighMass&nbsp;<a href="79165?version=1&table=Contour35">exp</a>&nbsp;<a href="79165?version=1&table=Contour36">obs</a> B combination&nbsp;<a href="79165?version=1&table=Contour37">exp</a>&nbsp;<a href="79165?version=1&table=Contour38">obs</a> Best combination&nbsp;<a href="79165?version=1&table=Contour39">exp</a>&nbsp;<a href="79165?version=1&table=Contour40">obs</a><br/><br/><b>SR Distribution:</b><br/><a href="79165?version=1&table=SRdistribution1">b0L-SRA</a>: $m_{\mathrm{CT}}$ <a href="79165?version=1&table=SRdistribution2">b0L-SRB</a>: $\mathrm{min[m_{T}(jet_{1-4}, E_{T}^{miss})]}$ <a href="79165?version=1&table=SRdistribution3">b0L-SRC</a>: ${\cal A}$ <a href="79165?version=1&table=SRdistribution4">b1L-SRA300-2j</a>: $\mathrm{m_{bb}}$ <a href="79165?version=1&table=SRdistribution5">b1L-SRA</a>: $\mathrm{m_{eff}}$ <a href="79165?version=1&table=SRdistribution6">b1L-SRB</a>: $\mathrm{m_{T}}$<br/><br/><b>Cross section upper limit:</b><br/><i>symmetric:</i> <a href="79165?version=1&table=Limitoncrosssection1">b0L-best</a> <a href="79165?version=1&table=Limitoncrosssection2">b0L-SRA350</a> <a href="79165?version=1&table=Limitoncrosssection3">b0L-SRA450</a> <a href="79165?version=1&table=Limitoncrosssection4">b0L-SRA550</a> <a href="79165?version=1&table=Limitoncrosssection5">b0L-SRB</a> <a href="79165?version=1&table=Limitoncrosssection6">b0L-SRC</a><br/><i>asymmetric:</i> <a href="79165?version=1&table=Limitoncrosssection7">b0L-best</a> <a href="79165?version=1&table=Limitoncrosssection8">b0L-SRA350</a> <a href="79165?version=1&table=Limitoncrosssection9">b0L-SRA450</a> <a href="79165?version=1&table=Limitoncrosssection10">b0L-SRB</a> <a href="79165?version=1&table=Limitoncrosssection11">b1L-best</a> <a href="79165?version=1&table=Limitoncrosssection12">b1L-SRA300-2j</a> <a href="79165?version=1&table=Limitoncrosssection13">b1L-SRA450</a> <a href="79165?version=1&table=Limitoncrosssection14">b1L-SRA600</a> <a href="79165?version=1&table=Limitoncrosssection15">b1L-SRA750</a> <a href="79165?version=1&table=Limitoncrosssection16">b1L-SRB</a> <a href="79165?version=1&table=Limitoncrosssection17">best combination</a> <a href="79165?version=1&table=Limitoncrosssection18">A-LowMass</a> <a href="79165?version=1&table=Limitoncrosssection19">A-HighMass</a> <a href="79165?version=1&table=Limitoncrosssection20">B combination</a><br/><br/><b>Cutflow:</b><br/><i>symmetric:</i> <a href="79165?version=1&table=CutflowTable1">b0L-SRA (1 TeV, 1 GeV)</a> <a href="79165?version=1&table=CutflowTable2">b0L-SRB (700 GeV, 450 GeV)</a> <a href="79165?version=1&table=CutflowTable3">b0L-SRC (450 GeV, 430 GeV)</a><br/><i>mixed:</i> <a href="79165?version=1&table=CutflowTable4">b1L-SRA (700 GeV, 300 GeV)</a> <a href="79165?version=1&table=CutflowTable5">b1L-SRA300-2j (700 GeV, 300 GeV)</a> <a href="79165?version=1&table=CutflowTable6">b0L-SRA (700 GeV, 300 GeV)</a><br/><br/><b>Truth Code</b> and <b>SLHA Files</b> for the cutflows are available under "Resources" (purple button on the left)

Signal acceptance (in %) in the ( M(SBOTTOM), M(NEUTRALINO) ) mass plane for the symmetric decay of the sbottom into bottom quark and neutralino, for the b0L-SRA350 signal region.

More…

Search for pair production of Higgs bosons in the $b\bar{b}b\bar{b}$ final state using proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 01 (2019) 030, 2019.
Inspire Record 1668124 DOI 10.17182/hepdata.82599

A search for Higgs boson pair production in the $b\bar{b}b\bar{b}$ final state is carried out with up to 36.1 $\mathrm{fb}^{-1}$ of LHC proton--proton collision data collected at $\sqrt{s}$ = 13 TeV with the ATLAS detector in 2015 and 2016. Three benchmark signals are studied: a spin-2 graviton decaying into a Higgs boson pair, a scalar resonance decaying into a Higgs boson pair, and Standard Model non-resonant Higgs boson pair production. Two analyses are carried out, each implementing a particular technique for the event reconstruction that targets Higgs bosons reconstructed as pairs of jets or single boosted jets. The resonance mass range covered is 260--3000 GeV. The analyses are statistically combined and upper limits on the production cross section of Higgs boson pairs times branching ratio to $b\bar{b}b\bar{b}$ are set in each model. No significant excess is observed; the largest deviation of data over prediction is found at a mass of 280 GeV, corresponding to 2.3 standard deviations globally. The observed 95% confidence level upper limit on the non-resonant production is 13 times the Standard Model prediction.

4 data tables

The observed and expected 95% CL upper limits on the production cross section times branching ratio for the narrow-width scalar.

The observed and expected 95% CL upper limits on the production cross section times branching ratio for the bulk Randall-Sundrum model with $\frac{k}{\overline{M}_{\mathrm{Pl}}} = 1$.

The observed and expected 95% CL upper limits on the production cross section times branching ratio for the bulk Randall-Sundrum model with $\frac{k}{\overline{M}_{\mathrm{Pl}}} = 2$.

More…