A Comparison of jet production rates on the Z0 resonance to perturbative QCD

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Phys.Lett.B 247 (1990) 167-176, 1990.
Inspire Record 297698 DOI 10.17182/hepdata.29653

The production rates for 2-, 3-, 4- and 5-jet hadronic final states have been measured with the DELPHI detector at the e + e − storage ring LEP at centre of mass energies around 91.5 GeV. Fully corrected data are compared to O(α 2 s ) QCD matrix element calculations and the QCD scale parameter Λ MS is determined for different parametrizations of the renormalization scale ω 2 . Including all uncertainties our result is α s ( M 2 Z )=0.114±0.003[stat.]±0.004[syst.]±0.012[theor.].

2 data tables

Corrected jet rates.

Second systematic error is theoretical.


Determination of Z0 resonance parameters and couplings from its hadronic and leptonic decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Nucl.Phys.B 367 (1991) 511-574, 1991.
Inspire Record 317493 DOI 10.17182/hepdata.33016

From measurements of the cross sections for e + e − → hadrons and the cross sections and forward-backward charge-asymmetries for e e −→ e + e − , μ + μ − and π + π − at several centre-of-mass energies around the Z 0 pole with the DELPHI apparatus, using approximately 150 000 hadronic and leptonic events from 1989 and 1990, one determines the following Z 0 parameters: the mass and total width M Z = 91.177 ± 0.022 GeV, Γ Z = 2.465 ± 0.020 GeV , the hadronic and leptonic partial widths Γ h = 1.726 ± 0.019 GeV, Γ l = 83.4 ± 0.8 MeV, the invisible width Γ inv = 488 ± 17 MeV, the ratio of hadronic over leptonic partial widths R Z = 20.70 ± 0.29 and the Born level hadronic peak cross section σ 0 = 41.84±0.45 nb. A flavour-independent measurement of the leptonic cross section gives very consistent results to those presented above ( Γ l = 83.7 ± 0.8 rmMeV ). From these results the number of light neutrino species is determined to be N v = 2.94 ±0.10. The individual leptonic widths obtained are: Γ e = 82.4±_1.2 MeV, Γ u = 86.9±2.1 MeV and Γ τ = 82.7 ± 2.4 MeV. Assuming universality, the squared vector and axial-vector couplings of the Z 0 to charged leptons are: V ̄ l 2 = 0.0003±0.0010 and A ̄ l 2 = 0.2508±0.0027 . These values correspond to the electroweak parameters: ϱ eff = 1.003 ± 0.011 and sin 2 θ W eff = 0.241 ± 0.009. Within the Minimal Standard Model (MSM), the results can be expressed in terms of a single parameter: sin 2 θ W M ̄ S = 0.2338 ± 0.0027 . All these values are in good agreement with the predictions of the MSM. Fits yield 43< m top < 215 GeV at the 95% level. Finally, the measured values of Γ Z and Γ inv are used to derived lower mass bounds for possible new particles.

18 data tables

Cross section from analysis I based on energy of charged particles. Additional 1.0 pct normalisation uncertainty.

Cross section from analysis II based on calorimeter energies. Additional 1.1 pct normalisation uncertainty.

Cross sections within the polar angle range 44 < THETA < 136 degrees and acollinearity < 10 degrees.. Overall systematic error 1.2 pct not included.

More…

A Precise Measurement of the $Z$ Resonance Parameters Through Its Hadronic Decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Phys.Lett.B 241 (1990) 435-448, 1990.
Inspire Record 295501 DOI 10.17182/hepdata.29722

A measurement of the cross section for e + e - → hadrons using 11 000 hadronic decays of the Z boson at ten different center-of-mass energies is presented. A three-parameter fit gives the following values for the Z mass M z , the total width Γ z , the product of the electronic and hadronic partial widths Γ e Γ h , and the unfolded pole cross section σ 0 : M Z =91.171±0.030(stat)±0.030 (beam) GeV, Γ Z =2.511±0.065 GeV, Γ e Γ h =0.148±0.006 (stat.)±0.004 (syst.) GeV 2 , σ 0 =41.6±0.7(stat.)±1.1 (syst.) nb,

1 data table

No description provided.


Measurement of the Mass and Width of the Z0 Particle from Multi - Hadronic Final States Produced in e+ e- Annihilations

The DELPHI collaboration Aarnio, P. ; Abreu, P. ; Adam, W. ; et al.
Phys.Lett.B 231 (1989) 539-547, 1989.
Inspire Record 282905 DOI 10.17182/hepdata.29769

First measurements of the mass and width of the Z 0 performed at the newly commissioned LEP Collider by the DELPHI Collaboration are presented. The measuements are derived from the study of multihadronic final states produced in e + e − annihilations at several energies around the Z 0 mass. The values found for the mass and width are M (Z 0 )=91.06±0.09 (stat) ±0.045 (syst.) GeV and Γ (Z 0 )=2.42±0.21 (stat.) GeV respectively, froma three-parameter fit to the line shape. A two-parameter fit in the framework of the standard model yields for the number of light neutrino species N ν =2.4±0.4 (stat.) ±0.5 (syst.).

1 data table

No description provided.


DELPHI results on the Z0 resonance parameters through its hadronic and leptonic decay modes

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
CERN-PPE-90-119, 1990.
Inspire Record 298840 DOI 10.17182/hepdata.47313

None

7 data tables

Overall systematic error is 2.3 pct.

Overall systematic error is 2.6 pct.

Overall systematic error is 2.8 pct.

More…

Inclusive measurements of the K+- and p / anti-p production in hadronic Z0 decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Nucl.Phys.B 444 (1995) 3-26, 1995.
Inspire Record 394052 DOI 10.17182/hepdata.47973

This analysis, based on a sample of 170000 hadronic Z0 decays, provides a measurement of the K ± and p/ p differential cross sections which is compared to string- and cluster fragmentation models. The total multiplicities for K ± and p/ p per hadronic event were found to be: NK = 2.26 ± 0.18 and N p = 1.07 ± 0.14. The positions ξ * of the maxima of the differential cross sections as a function of ξ = ln(1/ x p ) for K ± and p/ p were determined to be 2.63 ± 0.07 and 2.96 ± 0.16 respectively. A comparison of the ξ * values for various identified particles measured at LEP with the prediction of the Modified Leading Logarithm Approximation with Local Parton Hadron Duality model has been performed. The measured ξ * position as a function of the hadron mass, after corrections due to particle decays, is in agreement with the model calculation.

6 data tables

Second systematic error comes from the extrapolation to the full Z range (measured range is 0.018 < Z < 0.5) using the JETSET prediction.

Second systematic error comes from the extrapolation to the full Z range (measured range is 0.031 < Z < 0.11) using the JETSET prediction.

No description provided.

More…

Strange baryon production in Z hadronic decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 67 (1995) 543-554, 1995.
Inspire Record 394716 DOI 10.17182/hepdata.47953

A study of the production of strange octet and decuplet baryons in hadronic decays of the Z recorded by the DELPHI detector at LEP is presented. This includes the first measurement of the∑± average multiplicity. The total and differential cross sections, the event topology and the baryon-antibaryon correlations are compared with current hadronization models.

7 data tables

No description provided.

No description provided.

No description provided.

More…

Study of prompt photon production in hadronic Z0 decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 69 (1995) 1-14, 1995.
Inspire Record 397391 DOI 10.17182/hepdata.48136

None

3 data tables

Rates for gamma + 1 jet.

Rates for gamma + 2 jet.

Rates for gamma + 3 jet.


Determination of $alpha_{s}$ in second order {QCD} from hadronic $Z$ decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Z.Phys.C 54 (1992) 55-74, 1992.
Inspire Record 333272 DOI 10.17182/hepdata.14603

Distributions of event shape variables obtained from 120600 hadronicZ decays measured with the DELPHI detector are compared to the predictions of QCD based event generators. Values of the strong coupling constant αs are derived as a function of the renormalization scale from a quantitative analysis of eight hadronic distributions. The final result, αs(MZ), is based on second order perturbation theory and uses two hadronization corrections, one computed with a parton shower model and the other with a QCD matrix element model.

9 data tables

Experimental differential Thrust distributions.

Experimental differential Oblateness distributions.

Experimental differential C-parameter distributions.

More…

A study of the energy evolution of event shape distributions and their means with the DELPHI detector at LEP.

The DELPHI collaboration Abdallah, J. ; Abreu, P. ; Adam, W. ; et al.
Eur.Phys.J.C 29 (2003) 285-312, 2003.
Inspire Record 620250 DOI 10.17182/hepdata.13029

Infrared and collinear safe event shape distributions and their mean values are determined in e+e- collisions at centre-of-mass energies between 45 and 202 GeV. A phenomenological analysis based on power correction models including hadron mass effects for both differential distributions and mean values is presented. Using power corrections, alpha_s is extracted from the mean values and shapes. In an alternative approach, renormalisation group invariance (RGI) is used as an explicit constraint, leading to a consistent description of mean values without the need for sizeable power corrections. The QCD beta-function is precisely measured using this approach. From the DELPHI data on Thrust, including data from low energy experiments, one finds beta_0 = 7.86 +/- 0.32 for the one loop coefficient of the beta-function or, assuming QCD, n_f = 4.75 +/- 0.44 for the number of active flavours. These values agree well with the QCD expectation of beta_0=7.67 and n_f=5. A direct measurement of the full logarithmic energy slope excludes light gluinos with a mass below 5 GeV.

71 data tables

1-THRUST distribution.

THRUST-MAJOR distribution.

THRUST-MINOR distribution.

More…