Determination of $\alpha^- s$ From a Measurement of the Direct Photon Spectrum in $\Upsilon$ (1s) Decays

The ARGUS collaboration Albrecht, H. ; Andam, A.A. ; Binder, U. ; et al.
Phys.Lett.B 199 (1987) 291-296, 1987.
Inspire Record 248655 DOI 10.17182/hepdata.30061

Using the ARGUS detector at the DORIS II e + e − storage ring we have measured direct photons from the decay ???(1 S )→ γgg . The ratio R γ = Γ (???(1S)→ γgg )/ Γ (???(1S)→ ggg )=(3.00±0.13±0.18)% has been determined, from which we deduce values of the strong coupling constant α s =0.225±0.011±0.019 and the QCD scale parameter Λ MS =115±17±28 MeV defined in the modified minimal-subtraction scheme. The shape of the measured spectrum clearly rules out the predictions of the lowest order QCD calculations.

1 data table

No description provided.


Antideuteron production in $\Upsilon(nS)$ decays and in $e^+e^- \to q\overline{q}$ at $\sqrt{s} \approx 10.58 \mathrm{\,Ge\kern -0.1em V}$

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 89 (2014) 111102, 2014.
Inspire Record 1286317 DOI 10.17182/hepdata.64605

We present measurements of the inclusive production of antideuterons in $e^+e^-$ annihilation into hadrons at $\approx 10.58 \mathrm{\,Ge\kern -0.1em V}$ center-of-mass energy and in $\Upsilon(1S,2S,3S)$ decays. The results are obtained using data collected by the BABAR detector at the PEP-II electron-positron collider. Assuming a fireball spectral shape for the emitted antideuteron momentum, we find $\mathcal{B}(\Upsilon(1S) \to \bar{d}X) = (2.81 \pm 0.49 \mathrm{(stat)} {}^{+0.20}_{-0.24} \mathrm{(syst)})/! \times /! 10^{-5}$, $\mathcal{B}(\Upsilon(2S) \to \bar{d}X) = (2.64 \pm 0.11 \mathrm{(stat)} {}^{+0.26}_{-0.21} \mathrm{(syst)})/! \times /! 10^{-5}$, $\mathcal{B}(\Upsilon(3S) \to \bar{d}X) = (2.33 \pm 0.15 \mathrm{(stat)} {}^{+0.31}_{-0.28} \mathrm{(syst)})/! \times /! 10^{-5}$, and $\sigma (e^+e^- \to \bar{d}X) = (9.63 \pm 0.41 \mathrm{(stat)} {}^{+1.17}_{-1.01} \mathrm{(syst)}) \mbox{\,fb}$.

5 data tables

The rate of antideuteron production from the decay of UPSILON(3S).

The rate of antideuteron production from the decay of UPSILON(2S).

The rate of antideuteron production from the decay of UPSILON(1S).

More…

Measurement of inclusive differential cross sections for Upsilon(1S) production in p anti-p collisions at s**(1/2) = 1.96-TeV

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 94 (2005) 232001, 2005.
Inspire Record 676877 DOI 10.17182/hepdata.51525

We present measurements of the inclusive production cross sections of the Upsilon(1S) bottomonium state in ppbar collisions at sqrt(s) = 1.96 TeV. Using the Upsilon(1S) to mu+mu- decay mode for a data sample of 159 +- 10 pb^-1 collected by the D0 detector at the Fermilab Tevatron collider, we determine the differential cross sections as a function of the Upsilon(1S) transverse momentum for three ranges of the Upsilon(1S) rapidity: 0 < |y| < 0.6, 0.6 < |y| < 1.2, and 1.2 < |y| < 1.8.

2 data tables

Cross section per unit of rapidity times branching ratio to MU+ MU-. Systematic (DSYS) error does not include the 6.1 PCT uncertainty on the luminosity.

Normalized differential cross section for UPSI(1S) production.. Errors contain statistical and systematics (excluding luminosity error).


Measurement of the fraction of \Y1S originating from \chib1P decays in $pp$ collisions at $\sqrt{s} = 7\tev$

The LHCb collaboration Aaij, R. ; Abellan Beteta, C. ; Adametz, A. ; et al.
JHEP 11 (2012) 031, 2012.
Inspire Record 1184177 DOI 10.17182/hepdata.72876

The production of \chib1P mesons in $pp$ collisions at a centre-of-mass energy of $7\tev$ is studied using $32\invpb$ of data collected with the \lhcb detector. The $\chib1P$ mesons are reconstructed in the decay mode $\chib1P \to \Y1S\g \to \mumu\g$. The fraction of \Y1S originating from \chib1P decays in the \Y1S transverse momentum range $6 < \pt^{\Y1S} < 15\gevc$ and rapidity range $2.0 < y^{\Y1S} < 4.5$ is measured to be $(20.7\pm 5.7\pm 2.1^{+2.7}_{-5.4})%$, where the first uncertainty is statistical, the second is systematic and the last gives the range of the result due to the unknown \Y1S and \chib1P polarizations.

1 data table

Fraction of $\Upsilon(1S)$ originating from $\chi_b(1P)$ decays for different $p_T(\Upsilon(1S))$ bins, assuming production of unpolarized $\Upsilon(1S)$ and $\chi_b(1P)$ mesons. The first uncertainty is statistical, the second is the systematic uncertainty ($10.21\%$) and the third uncertainty is due to the unknown $\Upsilon(1S)$ and $\chi_b(1P)$ polarizations ($ _{-26}^{+13}\%$). The second and third uncertainties are considerent constant over the measurement fiducial phase-space.


Measurement of Upsilon production in pp collisions at {\surd}s = 7 TeV

The LHCb collaboration Aaij, R. ; Abellan Beteta, C. ; Adeva, B. ; et al.
Eur.Phys.J.C 72 (2012) 2025, 2012.
Inspire Record 1091071 DOI 10.17182/hepdata.58651

The production of Upsilon(1S), Upsilon(2S) and Upsilon(3S) mesons in proton-proton collisions at the centre-of-mass energy of sqrt(s)=7 TeV is studied with the LHCb detector. The analysis is based on a data sample of 25 pb-1 collected at the Large Hadron Collider. The Upsilon mesons are reconstructed in the decay mode Upsilon -&gt; mu+ mu- and the signal yields are extracted from a fit to the mu+ mu- invariant mass distributions. The differential production cross-sections times dimuon branching fractions are measured as a function of the Upsilon transverse momentum pT and rapidity y, over the range pT &lt; 15 GeV/c and 2.0 &lt; y &lt; 4.5. The cross-sections times branching fractions, integrated over these kinematic ranges, are measured to be sigma(pp -&gt; Upsilon(1S) X) x B(Upsilon(1S)-&gt;mu+ mu-) = 2.29 {\pm} 0.01 {\pm} 0.10 -0.37 +0.19 nb, sigma(pp -&gt; Upsilon(2S) X) x B(Upsilon(2S)-&gt;mu+ mu-) = 0.562 {\pm} 0.007 {\pm} 0.023 -0.092 +0.048 nb, sigma(pp -&gt; Upsilon(3S) X) x B(Upsilon(3S)-&gt;mu+ mu-) = 0.283 {\pm} 0.005 {\pm} 0.012 -0.048 +0.025 nb, where the first uncertainty is statistical, the second systematic and the third is due to the unknown polarisation of the three Upsilon states.

17 data tables

Integrated cross-sections times dimuon branching fractions in the PT range < 15 GeV/c and rapidity in the range 2.0-4.0. The second systematic (sys) error is due to the unknown polarisation of the three states.

Double differential cross section for UPSI(1S) production times the dimuon branching fraction as a function of PT for the rapidity region 2.0-2.5. The second systematic (sys) error is due to the unknown polarisation of the UPSI(1S).

Double differential cross section for UPSI(1S) production times the dimuon branching fraction as a function of PT for the rapidity region 2.5-3.0. The second systematic (sys) error is due to the unknown polarisation of the UPSI(1S).

More…

Suppression of Upsilon Production in d+Au and Au+Au Collisions at sqrt(s_NN) = 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Lett.B 735 (2014) 127-137, 2014.
Inspire Record 1269346 DOI 10.17182/hepdata.102940

We report measurements of Upsilon meson production in p+p, d+Au, and Au+Au collisions using the STAR detector at RHIC. We compare the Upsilon yield to the measured cross section in p+p collisions in order to quantify any modifications of the yield in cold nuclear matter using d+Au data and in hot nuclear matter using Au+Au data separated into three centrality classes. Our p+p measurement is based on three times the statistics of our previous result. We obtain a nuclear modification factor for Upsilon(1S+2S+3S) in the rapidity range |y|<1 in d+Au collisions of R_dAu = 0.79 +/- 0.24 (stat.) +/- 0.03 (sys.) +/- 0.10 (pp sys.). A comparison with models including shadowing and initial state parton energy loss indicates the presence of additional cold-nuclear matter suppression. Similarly, in the top 10% most-central Au+Au collisions, we measure a nuclear modification factor of R_AA=0.49 +/- 0.1 (stat.) +/- 0.02 (sys.) +/- 0.06 (pp sys.), which is a larger suppression factor than that seen in cold nuclear matter. Our results are consistent with complete suppression of excited-state Upsilon mesons in Au+Au collisions. The additional suppression in Au+Au is consistent with the level expected in model calculations that include the presence of a hot, deconfined Quark-Gluon Plasma. However, understanding the suppression seen in d+Au is still needed before any definitive statements about the nature of the suppression in Au+Au can be made.

14 data tables

Invariant mass distributions of electron pairs in the region $|y_{ee}| < 0.5$, p+p.

Invariant mass distributions of electron pairs in the region $|y_{ee}| < 0.5$, d+Au.

(a) $B_{ee} \times d\sigma/dy$ vs. $y$ for p+p collisions and for d+Au collisions (scaled down by 103).

More…

Measurement of elastic Upsilon photoproduction at HERA.

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Phys.Lett.B 437 (1998) 432-444, 1998.
Inspire Record 473522 DOI 10.17182/hepdata.44207

The photoproduction reaction gamma p -> mu+ mu- p has been studied in ep interactions using the ZEUS detector at HERA. The data sample corresponds to an integrated luminosity of 43.2 pb^{-1}. The Upsilon meson has been observed in photoproduction for the first time. The sum of the products of the elastic Upsilon(1S), Upsilon(2S), Upsilon(3S) photoproduction cross sections with their respective branching ratios is determined to be 13.3 +- 6.0(stat.)^{+2.7}_{-2.3}(syst.) pb at a mean photon-proton centre of mass energy of 120 GeV. The cross section is above the prediction of a perturbative QCD model.

2 data tables

Unresolved UPSILON cross sections (times branching ratio to two muons).

Mean photoproduction cross section for UPSI(1S) production.


Muon Pairs and Upper Limit for $\Upsilon$ Production by 280-{GeV} Muons

Bollini, D. ; Frabetti, P.L. ; Heiman, G. ; et al.
Nucl.Phys.B 199 (1982) 27, 1982.
Inspire Record 169127 DOI 10.17182/hepdata.34208

The high mass μ + μ − pairs produced by 280 GeV μ + on a carbon target are studied in a search for the Y production. The high mass continuum in the region 2–18 GeV is interpreted in terms of QED pair production and of μ pairs originating from the decay of hidden and open charm particles as well as of hadrons ( π , K) from deep inelastic interactions. The upper limit for the upsilon production by muons is found to be, at the 90% confidence level, σ γ ·(γ→μ + μ − )<13·10 −39 cm 2 /nucleon.

8 data tables
More…

High Precision Measurement of the $\Upsilon$ Meson Mass

Artamonov, A.S. ; Baru, S.E. ; Blinov, A.E. ; et al.
Phys.Lett.B 118 (1982) 225, 1982.
Inspire Record 178785 DOI 10.17182/hepdata.37137

A high precision measurement of the υ-meson mass has been performed at the storage ring VEPP-4 using the MD-1 detector. The resonance depolarization method has been used for the absolute calibration of the beam energy that allowed to improve the accuracy of υ-mass measurement by a factor of ten. The following mass value has been obtained: M = 9459.7 ± 0.6 MeV.

1 data table

No description provided.