Measurement of the cross section for electroweak production of a Z boson, a photon and two jets in proton-proton collisions at $\sqrt{s} =$ 13 TeV and constraints on anomalous quartic couplings

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 06 (2020) 076, 2020.
Inspire Record 1781935 DOI 10.17182/hepdata.93069

A measurement is presented of the cross section for electroweak production of a Z boson and a photon in association with two jets (Z$\gamma$jj) in proton-proton collisions. The Z boson candidates are selected through their decay into a pair of electrons or muons. The process of interest, electroweak Z$\gamma$jj production, is isolated by selecting events with a large dijet mass and a large pseudorapidity gap between the two jets. The measurement is based on data collected at the CMS experiment at $\sqrt{s} =$ 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The observed significance of the signal is 3.9 standard deviations, where a significance of 5.2 standard deviations is expected in the standard model. These results are combined with published results by CMS at $\sqrt{s} =$ 8 TeV, which leads to observed and expected respective significances of 4.7 and 5.5 standard deviations. From the 13 TeV data, a value is obtained for the signal strength of electroweak Z$\gamma$jj production and bounds are given on quartic vector boson interactions in the framework of dimension-eight effective field theory operators.

3 data tables

The measured EWK Zgamma+2j fiducial cross section. The uncertainty is the combined stastical uncertianty and the systematic uncertainty including experimental and theortical sources

The measured combined QCD-induced and EWK Zgamma+2j fiducial cross section. The uncertainty is the combined stastical uncertianty and the systematic uncertainty including experimental and theortical sources

aQGC limits on effective field theory parameters in EWK Zgamma events


Search for anomalous electroweak production of vector boson pairs in association with two jets in proton-proton collisions at 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 798 (2019) 134985, 2019.
Inspire Record 1735737 DOI 10.17182/hepdata.89398

A search for anomalous electroweak production of WW, WZ, and ZZ boson pairs in association with two jets in proton-proton collisions at $\sqrt{s} =$ 13 TeV at the LHC is reported. The data sample corresponds to an integrated luminosity of 35.9 fb$^{-1}$ collected with the CMS detector. Events are selected by requiring two jets with large rapidity separation and invariant mass, one or two leptons (electrons or muons), and a W or Z boson decaying hadronically. No excess of events with respect to the standard model background predictions is observed and constraints on the structure of quartic vector boson interactions in the framework of dimension-8 effective field theory operators are reported. Stringent limits on parameters of the effective field theory operators are obtained. The observed 95% confidence level limits for the S0, M0, and T0 operators are $-$2.7 $<$ f$_{\mathrm{S0}}/ \Lambda^{4}$ $<$ 2.7, $-$1.0 $<$ f$_{\mathrm{M0}}/ \Lambda^{4}$ $<$ 1.0, and $-$0.17 $<$ f$_{\mathrm{T0}}/ \Lambda^{4}$ $<$ 0.16, in units of TeV$^{-4}$. Constraints are also reported on the product of the cross section and branching fraction for vector boson fusion production of charged Higgs bosons as a function of mass from 600 to 2000 GeV. The results are interpreted in the context of the Georgi-Machacek model.

10 data tables

Expected yields from various background processes in $\mathrm{WV}$ and $\mathrm{ZV}$ final states. The combination of the statistical and systematic uncertainties are shown. The predicted yields are shown with their best-fit normalizations from the background-only fit. The aQGC signal yields are shown for two aQGC scenarios with $f_{T2}/ \Lambda^{4} = -0.5$ TeV$^{-4}$ and $f_{T2}/ \Lambda^{4} = -2.5$ TeV$^{-4}$ for the $\mathrm{WV}$ and $\mathrm{ZV}$ channels, respectively. The charged Higgs boson signal yields are also shown for values of $s_{\mathrm{H}}=0.5$ and $m_{\mathrm{H}_{5}}=500$ GeV in the GM model. The statistical uncertainties are shown for the expected signal yields.

Observed and expected lower and upper 95\% CL limits on the parameters of the quartic operators S0, S1, M0, M1, M6, M7, T0, T1, and T2 in $\mathrm{WV}$ and $\mathrm{ZV}$ channels. The last two columns show the observed and expected limits for the combination of the $\mathrm{WV}$ and $\mathrm{ZV}$ channels.

Expected and observed exclusion limits at the 95\% CL as a function of $m(\mathrm{H}^{\pm})$ for $\sigma_\mathrm{VBF}(\mathrm{H}^{\pm}) \, \mathcal{B}(\mathrm{H}^{\pm} \rightarrow \mathrm{W}^{\pm}\mathrm{Z})$ in the $\mathrm{WV}$ final state.

More…

Measurement of electroweak WZ boson production and search for new physics in WZ + two jets events in pp collisions at $\sqrt{s} =$ 13TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 795 (2019) 281-307, 2019.
Inspire Record 1713565 DOI 10.17182/hepdata.89174

A measurement of WZ electroweak (EW) vector boson scattering is presented. The measurement is performed in the leptonic decay modes WZ $\to$ $\ell\nu\ell'\ell'$, where $\ell, \ell' = $ e, $\mu$. The analysis is based on a data sample of proton-proton collisions at $\sqrt{s} =$ 13 TeV at the LHC collected with the CMS detector and corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The WZ plus two jet production cross section is measured in fiducial regions with enhanced contributions from EW production and found to be consistent with standard model predictions. The EW WZ production in association with two jets is measured with an observed (expected) significance of 2.2 (2.5) standard deviations. Constraints on charged Higgs boson production and on anomalous quartic gauge couplings in terms of dimension-eight effective field theory operators are also presented.

5 data tables

The measured WZ cross section in the tight EWK fiducial region.

The measured WZ cross section in the loose EWK fiducial region.

The measured EWK WZ scale factor (mu) in the tight EWK fiducial region. The uncertainty is the combined stastical uncertianty and the systematic uncertainty including experimental and theortical sources

More…