Observation of parity-violating optical rotation in atomic thallium

Wolfenden, T.D. ; Baird, P.E.G. ; Sandars, P.G.H. ;
EPL 15 (1991) 731-736, 1991.
Inspire Record 331200 DOI 10.17182/hepdata.43748

Parity-violating optical rotation induced by the neutral weak-current interaction has been detected and measured for the first time in atomic thallium vapour. Accurate atomic calculations predicting the size of the rotation are available for this element; thallium also benefits from the Z3 enhancement of the effect. The magnetic-dipole transition 6p1/2-6p3/2 at 1.283 μm was excited using a single-mode semiconductor laser and the small optical rotation was measured using a sensitive polarimeter. The result, expressed in terms of the quantity R = Im E1p.v./M1, is - 12.5(19)10-8 and is consistent with recent calculations based on the standard model.

1 data table

Spin of the Tl nucleus is 1/2.


Precise Measurement of Parity Nonconserving Optical Rotation in Atomic Thallium

Edwards, N.H. ; Phipp, S.J. ; Baird, P.E.G. ; et al.
Phys.Rev.Lett. 74 (1995) 2654-2657, 1995.
Inspire Record 943148 DOI 10.17182/hepdata.19660

We report a new measurement of parity nonconserving (PNC) optical rotation on the 6p1/2- 6p3/2 transition in atomic thallium near 1283 nm. The result expressed in terms of the quantity R=Im{E1PNC/M1} is −(15.68±0.45)×10−8, and is consistent with current calculations based on the standard model. In addition, limits have been set on the much smaller nuclear spin-dependent rotation amplitude at RS=(0.04±0.20)×10−8; this is consistent with theoretical estimates which include a nuclear anapole contribution.

1 data table

Spin of the Tl nucleus is 1/2.


Precise test of electroweak theory from a new measurement of parity nonconservation in atomic thallium

Vetter, P.A. ; Meekhof, D.M. ; Majumder, P.K. ; et al.
Phys.Rev.Lett. 74 (1995) 2658-2661, 1995.
Inspire Record 405007 DOI 10.17182/hepdata.19649

We report a new measurement of parity nonconserving (PNC) optical rotation near the 1.28 μm, 6P1/2→6P3/2 magnetic dipole transition in thallium. We find the ratio of the PNC E1 amplitude to the M1 amplitude to be R=(−14.68±0.17)×10−8, which within the present uncertainty of atomic theory yields the thallium weak charge Qw(T205l)=−114.2±3.8 and the electroweak parameter S=−2.2±3.0. Separate measurements on the F=1 and F=0 ground-state hyperfine components of the transition yield R1−R0=(0.15±0.20)×10−8, which limits the size of nuclear spin-dependent PNC in Tl.

1 data table

Spin of the Tl nucleus is 1/2.


Preliminary Observation of Parity Nonconservation in Atomic Thallium

Conti, R. ; Bucksbaum, P. ; Chu, S. ; et al.
Phys.Rev.Lett. 42 (1979) 343-346, 1979.
Inspire Record 136903 DOI 10.17182/hepdata.20786

Parity nonconservation is observed in the 6P122−7P122 transition in thallium. Absorption of circularly polarized 293-nm photons by 6P122 atoms in an E field results in polarization of the 7P122 state through interference of Stark E1 amplitudes with M1 and parity-nonconserving E1 amplitudes M and Ep. Detection of this polarization yields the circular dichroism δ=+(5.2±2.4)×10−3, which agrees in sign and magnitude with theoretical estimates based on the Weinberg-Salam model.

1 data table

Used 99.999% pure thallium metal with natural isotopic abundances (29.5% Tl203, 70.5% Tl205). SIG(C+), SIG(C-) are the cross sections for absorption of 293-nm photons, with +,- helicity, respectively. Spin of the Tl nucleus is 1/2. Statistical errors only.


PARITY NONCONSERVATION IN ATOMIC THALLIUM

Drell, Persis S. ; Commins, E.D. ;
Phys.Rev.Lett. 53 (1984) 968-971, 1984.
Inspire Record 208341 DOI 10.17182/hepdata.20404

We present new measurements of parity conservation in the 293-nm transition in atomic Tl81205. Linearly polarized 293-nm photons, polarization ε^, are absorbed by 6P122 atoms in crossed electric and magnetic fields. The transition probability for each Zeeman component contains a term proportional to ε^·B→ε^·E→×B→ arising from interference between the Stark E1 amplitude βE and the parity-nonconserving E1 amplitude Ep. Our result, [ImEpβ]expt=−1.73±0.33 mV/cm, is compared with estimates based on the standard electroweak model.

1 data table

Spin of the Tl nucleus is 1/2.


Observations of Parity Nonconservation in Atomic Thallium

Bucksbaum, P.H. ; Commins, E.D. ; Hunter, L.R. ;
Phys.Rev.D 24 (1981) 1134-1148, 1981.
Inspire Record 166691 DOI 10.17182/hepdata.24054

A detailed account is given of observations of parity nonconservation in the 6P122−7P122 transition in Tl81203,205. Absorption of circularly polarized 293-nm photons by 6P122 atoms in an E field results in polarization of the 7P122 state through interference of the Stark E1 amplitude with M1 and parity-nonconserving E1 amplitudes. This polarization is detected by selective excitation of mF=±1 components of the 7P122 state to the 8S122 state and observation of the ensuing decay fluorescence at 323 nm. Systematic corrections due to imperfect circular polarization, misaligned E fields, and residual magnetic fields are determined precisely by a series of auxiliary experiments. The result is expressed in terms of the circular dichroism δexpt=+(2.8−0.9+1.0)×10−3, to be compared with estimates based on the Weinberg-Salam model for sin2θw=0.23:δtheo=+(2.1±0.7)×10−3.

1 data table

Used 99.999% pure thallium metal with natural isotopic abundances (29.5% Tl203, 70.5% Tl205). SIG(C=+),SIG(C=-) are the cross sections for absorption of 293-nm photons with +- helicity, respectively. Spin of the Tl nucleus is 1/2.