A study of the energy evolution of event shape distributions and their means with the DELPHI detector at LEP.

The DELPHI collaboration Abdallah, J. ; Abreu, P. ; Adam, W. ; et al.
Eur.Phys.J.C 29 (2003) 285-312, 2003.
Inspire Record 620250 DOI 10.17182/hepdata.13029

Infrared and collinear safe event shape distributions and their mean values are determined in e+e- collisions at centre-of-mass energies between 45 and 202 GeV. A phenomenological analysis based on power correction models including hadron mass effects for both differential distributions and mean values is presented. Using power corrections, alpha_s is extracted from the mean values and shapes. In an alternative approach, renormalisation group invariance (RGI) is used as an explicit constraint, leading to a consistent description of mean values without the need for sizeable power corrections. The QCD beta-function is precisely measured using this approach. From the DELPHI data on Thrust, including data from low energy experiments, one finds beta_0 = 7.86 +/- 0.32 for the one loop coefficient of the beta-function or, assuming QCD, n_f = 4.75 +/- 0.44 for the number of active flavours. These values agree well with the QCD expectation of beta_0=7.67 and n_f=5. A direct measurement of the full logarithmic energy slope excludes light gluinos with a mass below 5 GeV.

71 data tables

1-THRUST distribution.

THRUST-MAJOR distribution.

THRUST-MINOR distribution.

More…

The scale dependence of the hadron multiplicity in quark and gluon jets and a precise determination of C(A)/C(F).

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 449 (1999) 383-400, 1999.
Inspire Record 495414 DOI 10.17182/hepdata.49173

Data collected at the Z resonance using the DELPHI detector at LEP are used to determine the charged hadron multiplicity in gluon and quark jets as a function of a transverse momentum-like scale. The colour factor ratio, \cacf, is directly observed in the increase of multiplicities with that scale. The smaller than expected multiplicity ratio in gluon to quark jets is understood by differences in the hadronization of the leading quark or gluon. From the dependence of the charged hadron multiplicity on the opening angle in symmetric three-jet events the colour factor ratio is measured to be: C_A/C_F = 2.246 \pm 0.062 (stat.) \pm 0.080 (syst.) \pm 0.095 (theo.)

3 data tables

Charged multiplicity in events with a hard photon, as a function of the apparent centre-of-mass energy (SQRT(S)) of the hadronic system. The errors shown are statistical only.

Charged multiplicity in symmetric three jet events as function of the opening angle between the low energetic jets, THETA1. Jets are defined from charged and neutral particles using the DURHAM algorithm. The errors shown are statistical only.

Twice the difference of the multiplicity in three jet events and in qqbar events of comparable scale 2(N_3jet-N_qqbar). The three-jet event multiplicity isequal to the data of Fig. 3c), the qqbar-multiplicity is taken from a fit of th e e+e- data corrected for the varying b-quark contribution. This multiplicity can be identified with the multiplicity of a hypothetical gluon-gluon event. Thereis a normalization uncertainty (i.e. a scale independent constant) of the gluon -gluon event multiplicity which should not influence the slope of the gg-multiplicity with scale (see paper). The errors shown are statistical only.


Investigation of the splitting of quark and gluon jets.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 4 (1998) 1-17, 1998.
Inspire Record 467927 DOI 10.17182/hepdata.49547

The splitting processes in identified quark and gluon jets are investigated using longitudinal and transverse observables. The jets are selected from symmetric three-jet events measured in Z decays with the Delphi detector in 1991-1994. Gluon jets are identified using heavy quark anti-tagging. Scaling violations in identified gluon jets are observed for the first time. The scale energy dependence of the gluon fragmentation function is found to be about two times larger than for the corresponding quark jets, consistent with the QCD expectation CA/CF. The primary splitting of gluons and quarks into subjets agrees with fragmentation models and, for specific regions of the jet resolution y, with NLLA calculations. The maximum of the ratio of the primary subjet splittings in quark and gluon jets is 2.77±0.11±0.10. Due to non-perturbative effects, the data are below the expectation at small y. The transition from the perturbative to the non-perturbative domain appears at smaller y for quark jets than for gluon jets. Combined with the observed behaviour of the higher rank splittings, this explains the relatively small multiplicity ratio between gluon and quark jets.

14 data tables

Scaled energy distribution of charged hadrons produced in Quark jets in 'Y'topology 3-JET events.

Scaled energy distribution of charged hadrons produced in Gluon jets in 'Y'topology 3-JET events.

Scaled energy distribution of charged hadrons produced in Quark jets in 'Mercedes' topology 3-JET events.

More…

Energy dependence of the differences between the quark and gluon jet fragmentation

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 70 (1996) 179-196, 1996.
Inspire Record 403254 DOI 10.17182/hepdata.48064

Three jet events arising from decays of the Z boson, collected by the DELPHI detector, were used to measure differences in quark and gluon fragmentation. Gluon jets were anti-tagged by identifying b quark jets. Unbiased quark jets came from events with two jets plus one photon. Quark and gluon jet properties in different energy ranges were compared for the first time within the same detector. Quark and gluon jets of nearly the same energy in symmetric three jet event topologies were also compared. Using three independent methods, the average value of the ratio of the mean charged multiplicities of gluon and quark jets is $$< r >=1.241 pm 0.015 (stat.)pm 0.025 (syst.).$$ Gluon jets are broader and produce fragments with a softer energy spectrum than quark jets of equivalent energy. The string effect has been observed in fully symmetric three jet events. The measured ratio Rγ of the charged particle flow in the qq̅ inter-jet region of the qq̅g and qq̅γ samples agrees with the perturbative QCD expectation. The dependence of the mean charged multiplicity on the hadronic center-of-mass energy was analysed in photon plus n-jet events. The value for αs(MZ) determined from these data using a QCD prediction with corrections at leading and next-to-leading order is $$←pha_s(M_Z)=0.116pm 0.003 (stat.)pm 03009 (syst.).$$

2 data tables

No description provided.

Durham and JADE algoritms were used.


A Study of differences between quark and gluon jets using vertex tagging of quark jets

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 58 (1993) 387-404, 1993.
Inspire Record 352789 DOI 10.17182/hepdata.48418

Quark and gluon jets with equal energies are identified in three-jet hadronicZ0 events, using reconstructed secondary vertices from heavy quark decay in conjunction with energy orderi

1 data table

No description provided.


Identified particles in quark and gluon jets.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 401 (1997) 118-130, 1997.
Inspire Record 428228 DOI 10.17182/hepdata.47615

A sample of about 1.4 million hadronic Z decays, selected among the data recorded by the DELPHI detector at LEP during 1994, was used to measure for the first time the momentum spectra of K + , K 0 , p , Λ and their antiparticles in gluon and quark jets. As observed for inclusive charged particles, the production spectra of identified particles were found to be softer in gluon jets than in quark jets, with a higher total multiplicity.

2 data tables

Y events.

Mercedes events.


Measurement of event shape and inclusive distributions at s**(1/2) = 130-GeV and 136-GeV.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 73 (1997) 229-242, 1997.
Inspire Record 424629 DOI 10.17182/hepdata.47715

Inclusive charged particle and event shape distributions are measured using 321 hadronic events collected with the DELPHI experiment at LEP at effective centre of mass energies of 130 to 136 GeV. These distributions are presented and compared to data at lower energies, in particular to the precise Z data. Fragmentation models describe the observed changes of the distributions well. The energy dependence of the means of the event shape variables can also be described using second order QCD plus power terms. A method independent of fragmentation model corrections is used to determine αs from the energy dependence of the mean thrust and heavy jet mass. It is measured to be: $$←pha _s(133 {⤪ GeV})={0.116}pm {0.007}_{exp-0.004theo}^{+0.005}$$ from the high energy data.

26 data tables

mean values for event shape variables.

Integral of event shape distribution over the specified interval.

Integral of event shape distribution over the specified interval.

More…

A Direct observation of quark - gluon jet differences at LEP

The OPAL collaboration Alexander, G. ; Allison, J. ; Allport, P.P. ; et al.
Phys.Lett.B 265 (1991) 462-474, 1991.
Inspire Record 316872 DOI 10.17182/hepdata.48454

Quark and gluon jets in e + e − three-jet events at LEP are identified using lepton tagging of quark jets, through observation of semi-leptonic charm and bottom quark decays. Events with a symmetry under transposition of the energies and directions of a quark and gluon jet are selected: these quark and gluon jets have essentially the same energy and event environment and as a consequence their properties can be compared directly. The energy of the jets which are studied is about 24.5 GeV. In the cores of the jets, gluon jets are found to yield a softer particle energy spectrum than quark jets. Gluon jets are observed to be broader than quark jets, as seen from the shape of their particle momentum spectra both in and out of the three-jet event plane. The greater width of gluon jets relative to quark jets is also visible from the shapes of their multiplicity distributions. Little difference is observed, however, between the mean value of particle multiplicity for the two jet types.

1 data table

QUARK means QUARK or QUARKBAR.


Measurement of three jet distributions sensitive to the gluon spin in e+ e- annihilations at S**(1/2) = 91-GeV

The OPAL collaboration Alexander, G. ; Allison, John ; Allport, P.P. ; et al.
Z.Phys.C 52 (1991) 543-550, 1991.
Inspire Record 317142 DOI 10.17182/hepdata.14852

None

4 data tables

Data at Parton level.

Ratio data/(Monte Carlo) at Parton level.

Data at Parton level.. Distribution of Ellis-Karliner angle.

More…

A Study of Jet Production Rates and a Test of QCD on the Z0 Resonance

The OPAL collaboration Akrawy, M.Z. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 235 (1990) 389-398, 1990.
Inspire Record 283783 DOI 10.17182/hepdata.29753

Relative production rates of multijet hadronic final states of Z 0 boson decays, observed in e + e − annihilation around 91 GeV centre of mass energy, are presented. The data can be well described by analytic O( α s 2 ) QCD calculations and by QCD shower model calaculations with parameters as determined at lower energies. A first judgement of Λ MS and of the renormalization scale μ 2 in O( α s 2 ) QCD results in values similar to those obtained in the continuum of e + e − annihilations. Significant scaling violations are observed when the 3-jet fractions are compared to the corresponding results from smaller centre of mass energies. They can be interpreted as being entirely due tot the energy dependence of α s , as proposed by the nonabelian nature of QCD, The possibility of an energy independent coupling constant can be excluded with a significance of 5.7 standard deviations.

1 data table

Data are corrected for final acceptance and resolution of the detector. No explicit corrections for hadronisation effects are applied.