Search for New Particles in $e^+ e^-$ Annihilation From 39.79-{GeV} to 45.52-{GeV}

Adeva, B. ; Barber, D.P. ; Becker, U. ; et al.
Phys.Rev.Lett. 53 (1984) 134, 1984.
Inspire Record 199819 DOI 10.17182/hepdata.20429

We have searched for resonances in the reaction e+e−→hadrons, γγ, μμ, and ee, in the energy range 39.79<s<45.52 GeV, using the Mark J detector at PETRA. We obtain stringent upper limits on the production of toponium and particles postulated to explain Z0→leptonpair+γ events observed at the CERN p―p collider. We also set limits on the mass and coupling constant of excited electrons.

1 data table

No description provided.


A Test of Universality of Charged Leptons

Barber, D.P. ; Becker, U. ; Benda, H. ; et al.
Phys.Rev.Lett. 43 (1979) 1915, 1979.
Inspire Record 142012 DOI 10.17182/hepdata.20759

Measurements of the reactions e++e−→e++e−, μ++μ−, and τ++τ− at PETRA energies (s12=13,17,27.4,30 and 31.6 GeV) are reported. The results show that these reactions agree well with the predictions of quantum electrodynamics thus determining that all the known charged leptons are pointlike particles to a distance < × 10−16 cm.

2 data tables

No description provided.

No description provided.


Test of Quantum Electrodynamics at {PETRA} Energies

The Aachen-DESY-Annecy(LAPP)-MIT-NIKHEF-Beijing collaboration Barber, D. ; Becker, U. ; Benda, H. ; et al.
Phys.Rev.Lett. 42 (1979) 1110, 1979.
Inspire Record 140093 DOI 10.17182/hepdata.20817

We report on the measurement of the reaction e+e−→e+e− with a large—solid-angle electromagnetic shower detector at center-of-mass energies s=13 and 17 GeV. Comparison of our results with predictions of quantum electrodynamics shows excellent agreement in both the angular distribution and energy dependence. Values of cutoff parameters are also given.

1 data table

No description provided.


A Summary of Recent Experimental Results From Mark-$J$: High-energy $e^+ e^-$ Collisions at {PETRA}

The Mark-J collaboration Adeva, B. ; Barber, D.P. ; Becker, U. ; et al.
Phys.Rept. 109 (1984) 131, 1984.
Inspire Record 196567 DOI 10.17182/hepdata.30997

None

6 data tables

DATA ARE CORRECTED FOR TWO-PHOTON AND TAU PRODUCTION EFFECTS, ACCEPTANCE AND QED RADIATIVE EFFECTS UP TO ORDER ALPHA**3. THERE IS ALSO A 6 PCT NORMALISATION ERROR NOT INCLUDED. THE OVERALL AVERAGE VALUE OF R FROM THIS DATA IS 3.88 +- 0.04 +- 0.22.

No description provided.

SEE PRL 55, 665 FOR MOST RECENT VALUES OF THE MU+ MU- CROSS SECTIONS.

More…

Measurement of $e^+ e^- \to e^+ e^-$ and $e^+ e^- \to \gamma \gamma$ at Energies Up to 36.7-{GeV}

The CELLO collaboration Behrend, H.J. ; Chen, C. ; Field, J. ; et al.
Phys.Lett.B 103 (1981) 148-152, 1981.
Inspire Record 165288 DOI 10.17182/hepdata.31169

The differential cross sections of the reactions e + e − → e + e − and e + e − → λλ are measured at energies between 33.0 and 36.7 GeV. The results agree with the predictions of quantum electrodynamics. A comparison with the standard model of electroweak interaction yields sin 2 θ W = 0.25 ± 0.13.

2 data tables

No description provided.

No description provided.


Limits on Spin 0 Bosons in $e^+ e^-$ Annihilation Up to 45.2-{GeV} Center-of-mass Energy

The CELLO collaboration Behrend, H.J. ; Burger, J. ; Criegee, L. ; et al.
Phys.Lett.B 140 (1984) 130-136, 1984.
Inspire Record 199851 DOI 10.17182/hepdata.30547

We have studied the reactions e + e − → e + e − , e + e − → γγ , e + e − → μ + μ − , and e + e − → τ + τ − in the centre-of-mass (CM) energy range from 39.8 to 45.2 GeV using the CELLO detector at PETRA. Upper limits on the partial widths for new spin 0 bosons with masses both within and above the energy range covered are determined. No evidence for contributions of such new particles has been observed up to the highest PETRA energies in a model independent way. Under the assumptions of recently suggested models relating the existence of spin 0 bosons to the radiative width Γ τ of the Z 0 we exclude such bosons at the 95% confidence level for masses below the Z 0 -mass if Γ τ > 20 MeV.

2 data tables

No description provided.

Figure actually gives the 95 PCT CL upper limits of the coupling constants for each process as a function of the mass of the intermediate spin zero boson.


Coupling Strengths of Weak Neutral Currents From Leptonic Final States at 22-{GeV} and 34-{GeV}

The CELLO collaboration Behrend, H.J. ; Chen, C. ; Fenner, H. ; et al.
Z.Phys.C 16 (1983) 301, 1983.
Inspire Record 180756 DOI 10.17182/hepdata.16385

Differential cross sections fore+e−→e+e−, τ+, τ- measured with the CELLO detector at\(\left\langle {\sqrt s } \right\rangle= 34.2GeV\) have been analyzed for electroweak contributions. Vector and axial vector coupling constants were obtained in a simultaneous fit to the three differential cross sections assuming a universal weak interaction for the charged leptons. The results,v2=−0.12±0.33 anda2=1.22±0.47, are in good agreement with predictions from the standardSU(2)×U(1) model for\(\sin ^2 \theta _w= 0.228\). Combining this result with neutrino-electron scattering data gives a unique axial vector dominated solution for the leptonic weak couplings. Assuming the validity of the standard model, a value of\(\sin ^2 \theta _w= 0.21_{ - 0.09}^{ + 0.14}\) is obtained for the electroweak mixing angle. Additional vector currents are not observed (C<0.031 is obtained at the 95% C.L.).

2 data tables

No description provided.

Combined MU and TAU asymmetry. See PL 114B(1982)282 (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+1234> RED = 1234 </a>) and ZP C14(1982)283 (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+1245> RED = 1245 </a>) for individual asymmetry measurements.


Experimental Test of Electroweak Effects at {PETRA} Energies

The PLUTO collaboration Berger, Christoph ; Genzel, H. ; Grigull, R. ; et al.
Z.Phys.C 7 (1981) 289, 1981.
Inspire Record 156660 DOI 10.17182/hepdata.13818

The differential cross sections for Bhabha scattering and μ pair production, and the total τ pair cross section as measured by the PLUTO detector at PETRA, have been analyzed to extract information on the weak interaction of leptons. The data are compared with unified gauge theories. Since the observed electroweak effects are still consistent with zero (within errors) we can set experimental limits on neutral current parameters atQ2 values of 950 GeV2. In the framework of the standard SU(2)×U(1) model we find sin2Θw<0.52(95% c.l.). In the context of general singleZo models we can excludeZo masses of less than 40 GeV.

2 data tables

No description provided.

No description provided.


Test of {QED} in the Reactions $e^+ e^- \to e^+ e^-$ and $e^+ e^- \to \mu^+ \mu^-$ at {CMS} Energies From 9.4-{GeV} to 31.6-{GeV}

The PLUTO collaboration Berger, Christoph ; Genzel, H. ; Grigull, R. ; et al.
Z.Phys.C 4 (1980) 269, 1980.
Inspire Record 152289 DOI 10.17182/hepdata.15600

None

2 data tables

No description provided.

No description provided.


Tests of QED at 29-GeV Center-Of-Mass Energy

Bender, D. ; Derrick, M. ; Fernandez, E. ; et al.
Phys.Rev.D 30 (1984) 515, 1984.
Inspire Record 199464 DOI 10.17182/hepdata.23593

During the initial data run with the High Resolution Spectrometer (HRS) at SLAC PEP, an integrated luminosity of 19.6 pb−1 at a center-of-mass energy of 29 GeV was accumulated. The data on Bhabha scattering and muon pair production are compared with the predictions of QED and the standard model of electroweak interactions. The measured forward-backward charge asymmetry in the angular distribution of muon pairs is -8.4%±4.3%. A comparison between the data and theoretical predictions places limits on alternative descriptions of leptons and their interactions. The existence of heavy electronlike or photonlike objects that alter the structure of the QED vertices or modify the propagator are studied in terms of the QED cutoff parameters. The Bhabha-scattering results give a lower limit on a massive photon and upper limits on the effective size of the electron of Λ+>121 GeV and Λ−>118 GeV at the 95% confidence level. Muon pair production yields Λ+>172 GeV and Λ−>172 GeV. If electrons have substructure, the magnitude and character of the couplings of the leptonic constituents affects the Bhabha-scattering angular distributions to such an extent that limits on the order of a TeV can be extracted on the effective interaction length of the components. For models in which the constituents interact with vector couplings of strength g24π∼1, the energy scale ΛVV for the contact interaction is measured to be greater than 1419.0 GeV at the 95% confidence level. We set limits on the production of supersymmetric scalar electrons through s-channel single-photon annihilation and t-channel inelastic scattering. Using events with two noncollinear electrons and no other charged or observed neutral particles in the final state, we see one event which is consistent with a simple supersymmetric model but which is also consistent with QED. This allows us to exclude the scalar electron to 95% confidence level in the mass range 1.8 to 14.2 GeV/c2.

3 data tables

Comparison of Bhabhas with QED.

Muon angular distributions.

Forward-backward asymmetry from full angular range.