A Study of Bhabha Scattering at {PETRA} Energies

The TASSO collaboration Braunschweig, W. ; Gerhards, R. ; Kirschfink, F.J. ; et al.
Z.Phys.C 37 (1988) 171, 1988.
Inspire Record 249557 DOI 10.17182/hepdata.45173

We report on high statistics Bhabha scattering data taken with the TASSO experiment at PETRA at center of mass energies from 12 GeV to 46.8 GeV. We present an analysis in terms of electroweak parameters of the standard model, give limits on QED cut-off parameters and look for possible signs of compositeness.

7 data tables

Axis error includes +- 1/1 contribution (The overall uncertainty in the bin-to-bin polar acceptance due to shower corrections, trigger and reconstruction efficiencies was estimated to be less than 1% and was added in quadrature to the statistical errorsData have been corrected for qed radiative effects up to order alpha**3 (F.A.Berends, R.Kleiss, Nucl.Phys.B206(1983)61)//Weak radiative corrections have not yet been provided in a form of a Monte Carlo generator program, but are estimated to be negligible at PETRA energies (M.Bohm, A.Denner, W.Hollik, DESY-86-165)).

Axis error includes +- 1/1 contribution (The overall uncertainty in the bin-to-bin polar acceptance due to shower corrections, trigger and reconstruction efficiencies was estimated to be less than 1% and was added in quadrature to the statistical errorsData have been corrected for qed radiative effects up to order alpha**3 (F.A.Berends, R.Kleiss, Nucl.Phys.B206(1983)61)//Weak radiative corrections have not yet been provided in a form of a Monte Carlo generator program, but are estimated to be negligible at PETRA energies (M.Bohm, A.Denner, W.Hollik, DESY-86-165)).

Axis error includes +- 1/1 contribution (The overall uncertainty in the bin-to-bin polar acceptance due to shower corrections, trigger and reconstruction efficiencies was estimated to be less than 1% and was added in quadrature to the statistical errorsData have been corrected for qed radiative effects up to order alpha**3 (F.A.Berends, R.Kleiss, Nucl.Phys.B206(1983)61)//Weak radiative corrections have not yet been provided in a form of a Monte Carlo generator program, but are estimated to be negligible at PETRA energies (M.Bohm, A.Denner, W.Hollik, DESY-86-165)).

More…

An improved direct measurement of leptonic coupling asymmetries with polarized Z bosons.

The SLD collaboration Abe, Koya ; Abe, Kenji ; Abe, T. ; et al.
Phys.Rev.Lett. 86 (2001) 1162-1166, 2001.
Inspire Record 534735 DOI 10.17182/hepdata.41720

We present final measurements of the Z boson-lepton coupling asymmetry parameters Ae, Amu, and Atau with the complete sample of polarized Z bosons collected by the SLD detector at the SLAC Linear Collider. From the left-right production and decay polar angle asymmetries in leptonic Z decays we measure Ae = 0.1544 +- 0.0060, Amu = 0.142 +- 0.015, and Atau = 0.136 +- 0.015. Combined with our left-right asymmetry measured from hadronic decays, we find Ae = 0.1516 +- 0.0021. Assuming lepton universality, we obtain a combined effective weak mixing angle of sin**2 theta^{eff}_W = 0.23098 +- 0.00026.

1 data table

No description provided.


Electroweak Coupling Constants in the Leptonic Reactions e+ e- ---> e+ e- and e+ e- ---> mu+ mu- and Search for Scalar Leptons

The TASSO collaboration Brandelik, R. ; Braunschweig, W. ; Gather, K. ; et al.
Phys.Lett.B 117 (1982) 365-371, 1982.
Inspire Record 178495 DOI 10.17182/hepdata.6669

A high statistics experiment was performed on Bhabha scattering at energies between 14 and 34 GeV. Good agreement with QED was observed. The combined data on Bhabha scattering and μ pair production were found to agree with the standard theory of electroweak interaction giving sin 2 θ = 0.27 −0.07 +0.06 . Assuming for the Z 0 mass a value of 90 GeV the leptonic weak coupling constants were determined to g V 2 = −0.04 ± 0.06 and g A 2 = 0.35 ± 0.09. A search for scalar leptons sets lower limits on the mass of scalar electrons of M s e > 16.6 GeV and of scalar muons of M s μ > 16.4 GeV.

2 data tables

No description provided.

No description provided.


Electroweak Effects in $e^+ e^- \to e^+ e^-$ at $\sqrt{s}=29$-{GeV}

Fernandez, E. ; Ford, William T. ; Qi, N. ; et al.
Phys.Rev.D 35 (1987) 10-18, 1987.
Inspire Record 230164 DOI 10.17182/hepdata.3835

A high-precision measurement of the differential cross section for Bhabha scattering (e+e−→e+e−) is presented. The measurement was performed with the MAC detector at the PEP storage ring of the Stanford Linear Accelerator Center, at a center-of-mass energy of 29 GeV. Effects due to electroweak interference are observed and agree well with the predictions of the Glashow-Salam-Weinberg model. The agreement between the data and the electroweak prediction rules out substructure of the electron up to mass scales of 1 TeV.

5 data tables

Error contains both statistics and systematics.

No description provided.

No description provided.

More…

Improved measurements of cross-sections and asymmetries at the Z0 resonance

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Nucl.Phys.B 418 (1994) 403-427, 1994.
Inspire Record 373114 DOI 10.17182/hepdata.48349

During the 1992 running period of the LEP e + e − collider, the DELPHI experiment accumulated approximately 24 pb − of data at the Z 0 peak. The decays into hadrons and charged leptons have been analysed to give values for the cross sections and leptonic forward-backward asymmetries which are significantly improved with respect to those previously published by the DELPHI collaboration. Incorporating these new data, more precise values for the Z 0 resonance parameters are obtained from model-independent fits. The results are interpreted within the framework of the Standard Model, yielding for the top quark mass m t = 157 −48 +36 (expt.) −20 +19 (Higgs) GeV, and for the effective mixing angle sin 2 θ eff lept = 0.2328 ± 0.0013 (expt.) −0.0003 +0.0001 (Higgs), where (Higgs) represents the variation due to Higgs boson mass in the range 60 to 1000 GeV, with central value 300 GeV.

10 data tables

No description provided.

First result corresponds to the total cross section (i.e. S+T channel), while second one corresponds to S-channel only. An acollinearity less that 10 deg.

Forward-backward asymmetry within the polar angular range 44 < THETA < 136 degrees and acollinearity < 10 degrees.. First result corresponds to the total cross section (i.e. S+T channel), while second one corresponds to S-channel only.

More…

Measurement of the Branching Ratio for $\Upsilon^\prime$-prime $\to \mu \mu$

Kaarsberg, T. ; Lee-Franzini, Juliet ; Lovelock, D.M.J. ; et al.
Phys.Rev.D 35 (1987) 2265, 1987.
Inspire Record 230842 DOI 10.17182/hepdata.23382

Using the CUSB-II detector at the Cornell Electron Storage Ring, we have measured Bμμ, the branching fraction into muons, of the Υ’’ meson. We find Bμμ(Υ’’)=(1.53±0.33±0.21)%, from which the Υ’’ total decay width is 25.5±5.0 keV. From this result we obtain αs=0.170−0.012+0.015, ΛMS¯=148−39+56 MeV. (MS¯ denotes the modified minimal-subtraction scheme).

1 data table

No description provided.


Measurement of the Z0 line shape parameters and the electroweak couplings of charged leptons

The OPAL collaboration Alexander, G. ; Allison, John ; Allport, P.P. ; et al.
Z.Phys.C 52 (1991) 175-208, 1991.
Inspire Record 315269 DOI 10.17182/hepdata.14859

None

11 data tables

DATA FROM 1989 RUN. The cross section are quoted with their statistical and point-to-point systematic uncertainty of both the multihadron acceptance and the luminosity calculation.

DATA FROM 1990 RUN. The cross section are quoted with their statistical and point-to-point systematic uncertainty of both the multihadron acceptance and the luminosity calculation.

Cross sections corrected for the effects of efficiency and kinematic cuts and background. Data from 1989 run, reanalysed.

More…

Measurement of the running of the fine structure constant

The L3 collaboration Acciarri, M. ; Achard, P. ; Adriani, O. ; et al.
Phys.Lett.B 476 (2000) 40-48, 2000.
Inspire Record 523920 DOI 10.17182/hepdata.50032

Bhabha scattering data recorded at \sqrt{s}=189 GeV by the L3 detector at LEP are used to measure the running of the effective fine-structure constant for spacelike momentum transfers. The results are alpha^-1(-2.1 GeV^2) - alpha^-1(-6.25 GeV^2) = 0.78 +/- 0.26 alpha^-1(-12.25 GeV^2) - alpha^-1(-3434 GeV^2) = 3.80 +/- 1.29, in agreement with theoretical predictions.

3 data tables

No description provided.

Results extracted from the small angle Bhabha scattering sample at Z peak. Results contained total experimental uncertainty.

Results extracted from the large angle Bhabha scattering sample at sqrt(s) = 189 GeV. Results contained total experimental and theoretical uncertainty.


Muon pair production by electron-positron collisions in the gev region

Borgia, B. ; Ceradini, F. ; Conversi, M. ; et al.
Lett.Nuovo Cim. 3S2 (1972) 115-120, 1972.
Inspire Record 77432 DOI 10.17182/hepdata.37904

None

1 data table

CONST(NAME=EXP/THEORY) is the experimental numbers divided by the theoretical predictions.


New Results From Bhabha Scattering at 29-{GeV}

Derrick, M. ; Gan, K.K. ; Kooijman, P. ; et al.
Phys.Lett.B 166 (1986) 463-467, 1986.
Inspire Record 17511 DOI 10.17182/hepdata.6636

Results are reported on a high statistics study of Bhabha scattering at 29 GeV in the polar angle region, |cos θ | < 0.55. The data are consistent with the standard model, and measure vector and axial-vector coupling constants of g v 2 = 0.03 ± 0.09 and g a 2 = 0.46±0.14. Limits on the QED-cutoff parameters are Λ + > 154 GeV and Λ - > 220 GeV. Lower limits on scale parameters of composite models are in the range 0.9–2.8 TeV. The partial width of a hypothetical spin-zero boson decaying to e + e − has an upper limit which varies from 6 to 57 MeV corresponding to a boson mass in the range 45–80 GeV/ c 2 .

2 data tables

No description provided.

No description provided.