Date

Combination of measurements of inclusive deep inelastic ${e^{\pm }p}$ scattering cross sections and QCD analysis of HERA data

The H1 ZEUS collaborations Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
Eur.Phys.J. C75 (2015) 580, 2015.
Inspire Record 1377206 DOI 10.17182/hepdata.68951
9 data tables

HERA combined reduced cross sections $\sigma_{r,\rm NC}^{+}$ for NC $e^{+}p$ scattering at $\sqrt{s} = 318$ GeV; $\delta_{\rm stat}$, $\delta_{\rm uncor}$ and $\delta_{\rm cor}$ represent the statistical, uncorrelated systematic and correlated systematic uncertainties, respectively; $\delta_{\rm rel}$, $\delta_{\gamma p}$, $\delta_{\rm had}$ and $\delta_{1}$ to $\delta_{4}$ are the correlated sources of uncertainties arising from the combination procedure. The uncertainties are quoted in percent relative to $\sigma_{r,\rm NC}^{+}$.

HERA combined reduced cross sections $\sigma_{r,\rm NC}^{+}$ for NC $e^{+}p$ scattering at $\sqrt{s} = 300$ GeV; $\delta_{\rm stat}$, $\delta_{\rm uncor}$ and $\delta_{\rm cor}$ represent the statistical, uncorrelated systematic and correlated systematic uncertainties, respectively; $\delta_{\rm rel}$, $\delta_{\gamma p}$, $\delta_{\rm had}$ and $\delta_{1}$ to $\delta_{4}$ are the correlated sources of uncertainties arising from the combination procedure. The uncertainties are quoted in percent relative to $\sigma_{r,\rm NC}^{+}$.

HERA combined reduced cross sections $\sigma_{r,\rm NC}^{+}$ for NC $e^{+}p$ scattering at $\sqrt{s} = 251$ GeV; $\delta_{\rm stat}$, $\delta_{\rm uncor}$ and $\delta_{\rm cor}$ represent the statistical, uncorrelated systematic and correlated systematic uncertainties, respectively; $\delta_{\rm rel}$, $\delta_{\gamma p}$, $\delta_{\rm had}$ and $\delta_{1}$ to $\delta_{4}$ are the correlated sources of uncertainties arising from the combination procedure. The uncertainties are quoted in percent relative to $\sigma_{r,\rm NC}^{+}$.

More…

Inclusive Measurements of Inelastic Electron and Positron Scattering from Unpolarized Hydrogen and Deuterium Targets

The HERMES collaboration Airapetian, A. ; Akopov, N. ; Akopov, Z. ; et al.
JHEP 1105 (2011) 126, 2011.
Inspire Record 894309 DOI 10.17182/hepdata.66147
3 data tables

Results on the differential Born cross section $\frac{d^2\sigma^p}{dx\,dQ^2}$ and $F_2^p$. The statistical uncertainty $\delta_{stat.}$ and the systematic uncertainties $\delta_{PID}$ (particle identification), $\delta_{model}$ (model dependence outside the acceptance), $\delta_{mis.}$ (misalignment), and $\delta_{rad.}$ (Bethe-Heitler efficiencies) are given in percent. Corresponding $x$ bin numbers and $Q^2$ bin numbers and the average values $\langle x \rangle$ and $\langle {Q^2} \rangle$ are listed in the first four columns. The overall normalization uncertainty is 7.6 %. The structure function $F_2^p$ is derived using the parameterization $R=R_{1998}$.

Results on the differential Born cross section $\frac{d^2\sigma^d}{dx\,dQ^2}$ and $F_2^d$. The statistical uncertainty $\delta_{stat.}$ and the systematic uncertainties $\delta_{PID}$ (particle identification), $\delta_{model}$ (model dependence outside the acceptance), $\delta_{mis.}$ (misalignment), and $\delta_{rad.}$ (Bethe-Heitler efficiencies), are given in percent. Corresponding $x$ bin numbers and $Q^2$ bin numbers and the average values $\langle x \rangle$ and $\langle{Q^2}\rangle$ are listed in the first four columns. The overall normalization uncertainty is 7.5 %. The structure function $F_2^d$ is derived using the parameterization $R=R_{1998}$.

Results on the inelastic Born cross-section ratio ${\sigma^d}/{\sigma^p}$. The statistical uncertainty $\delta_{stat.}$, the systematic uncertainty $\delta_{rad.}$ due to radiative corrections and $\delta_{model}$ due to the model dependence outside the acceptance are given in percent. The average values of $x$ and $Q^2$ are listed in the first two columns. The overall normalization uncertainty is 1.4$\%$.


Measurement of the virtual-photon asymmetry $A_2$ and the spin-structure function $g_2$ of the proton

The HERMES collaboration Airapetian, A. ; Akopov, N. ; Akopov, Z. ; et al.
Eur.Phys.J. C72 (2012) 1921, 2012.
Inspire Record 1082840 DOI 10.17182/hepdata.66230
4 data tables

The spin-structure function $xg_2(x,Q^2)$ and virtual-photon asymmetry $A_2(x,Q^2)$ of the proton in bins of $(x,Q^2)$, see text for details. Statistical and systematic uncertainties are presented separately.

The spin-structure function $xg_2$ and the virtual-photon asymmetry $A_2$ of the proton after evolving to common $Q^2$ and averaging over in each $x$-bin (see text for details). Statistical and systematic uncertainties are presented separately.

Correlation matrix for $xg_2$ in 9 $x$-bins (as in Table 2).

More…

Inclusive Deep Inelastic Scattering at High $Q^2$ with Longitudinally Polarised Lepton Beams at HERA

The H1 collaboration Aaron, F.D. ; Alexa, C. ; Andreev, V. ; et al.
JHEP 1209 (2012) 061, 2012.
Inspire Record 1120512 DOI 10.17182/hepdata.64899

Inclusive e\pmp single and double differential cross sections for neutral and charged current deep inelastic scattering processes are measured with the H1 detector at HERA. The data were taken at a centre-of-mass energy of \surds = 319GeV with a total integrated luminosity of 333.7 pb-1 shared between two lepton beam charges and two longitudinal lepton polarisation modes. The differential cross sections are measured in the range of negative fourmomentum transfer squared, Q2, between 60 and 50 000GeV2, and Bjorken x between 0.0008 and 0.65. The measurements are combined with earlier published unpolarised H1 data to improve statistical precision and used to determine the structure function xF_3^gammaZ. A measurement of the neutral current parity violating structure function F_2^gammaZ is presented for the first time. The polarisation dependence of the charged current total cross section is also measured. The new measurements are well described by a next-to-leading order QCD fit based on all published H1 inclusive cross section data which are used to extract the parton distribution functions of the proton.

61 data tables

The Neutral Current Reduced Cross Section for E- P interactions with a beam polarisation of -25.8 % for Q^2 values of 120, 150, 200, 250 and 300 GeV^2.

The Neutral Current Reduced Cross Section for E- P interactions with a beam polarisation of -25.8 % for Q^2 values of 400, 500, 650, 800 and 1000 GeV^2.

The Neutral Current Reduced Cross Section for E- P interactions with a beam polarisation of -25.8 % for Q^2 values of 1200, 1500, 2000, 3000 and 5000 GeV^2.

More…

Deep inelastic cross-section measurements at large y with the ZEUS detector at HERA

The ZEUS collaboration Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
Phys.Rev. D90 (2014) 072002, 2014.
Inspire Record 1292476 DOI 10.17182/hepdata.64778
82 data tables

The reduced cross section for the reaction E+ P --> E+ X at a centre-of-mass energy 318 GeV and Q^2=7 GeV^2 for the central-vertex region. The (sys) error shown in the table is the total systematic uncertainty, excluding the normalisation uncertainties shown separately below.

The reduced cross section for the reaction E+ P --> E+ X at a centre-of-mass energy 318 GeV and Q^2=9 GeV^2 for the central-vertex region. The (sys) error shown in the table is the total systematic uncertainty, excluding the normalisation uncertainties shown separately below.

The reduced cross section for the reaction E+ P --> E+ X at a centre-of-mass energy 318 GeV and Q^2=12 GeV^2 for the central-vertex region. The (sys) error shown in the table is the total systematic uncertainty, excluding the normalisation uncertainties shown separately below.

More…

Measurement of high-Q2 neutral current deep inelastic $e^+p$ scattering cross sections with a longitudinally polarized positron beam at HERA

The ZEUS collaboration Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
Phys.Rev. D87 (2013) 052014, 2013.
Inspire Record 1183813 DOI 10.17182/hepdata.62614

Measurements of neutral current cross sections for deep inelastic scattering in e+p collisions at HERA with a longitudinally polarized positron beam are presented. The single-differential cross-sections dσ/dQ2, dσ/dx and dσ/dy and the reduced cross section σ˜ are measured in the kinematic region Q2>185  GeV2 and y<0.9, where Q2 is the four-momentum transfer squared, x the Bjorken scaling variable and y the inelasticity of the interaction. The measurements are performed separately for positively and negatively polarized positron beams. The measurements are based on an integrated luminosity of 135.5  pb-1 collected with the ZEUS detector in 2006 and 2007 at a center-of-mass energy of 318 GeV. The structure functions F˜3 and F3γZ are determined by combining the e+p results presented in this paper with previously published e-p neutral current results. The asymmetry parameter A+ is used to demonstrate the parity violation predicted in electroweak interactions. The measurements are well described by the predictions of the Standard Model.

26 data tables

The single-differential cross section DSIG/DQ**2 (Y<0.9,Y(1-x)**2>0.004), corrected to the electroweak Born level, for zero polarisation, Pe=0.

The single-differential cross section DSIG/DQ**2 (Y<0.9,Y(1-x)**2>0.004), corrected to the electroweak Born level, for positive (Pe=+0.32) and negative (Pe=-0.36) polarisations.

The single-differential cross section DSIG/DX (Y<0.9,Y(1-x)**2>0.004) at Q^2=185 GeV^2, corrected to the electroweak Born level, for zero (Pe=0), positive (Pe=+0.32) and negative (Pe=-0.36) polarisations.

More…

Measurement of neutral current e$\pm$p cross sections at high Bjorken x with the ZEUS detector

The ZEUS collaboration Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
Phys.Rev. D89 (2014) 072007, 2014.
Inspire Record 1269458 DOI 10.17182/hepdata.62545

The neutral current e+/-p cross section has been measured up to values of Bjorken x of approximately 1 with the ZEUS detector at HERA using an integrated luminosity of 187 inv. pb of e-p and 142 inv. pb of e+p collisions at sqrt(s) = 318GeV. Differential cross sections in x and Q2, the exchanged boson virtuality, are presented for Q2 geq 725GeV2. An improved reconstruction method and greatly increased amount of data allows a finer binning in the high-x region of the neutral current cross section and leads to a measurement with much improved precision compared to a similar earlier analysis. The measurements are compared to Standard Model expectations based on a variety of recent parton distribution functions.

17 data tables

Double differential cross section for Q^2=725 GeV^2.

Double differential cross section for Q^2=875 GeV^2.

Double differential cross section for Q^2=1025 GeV^2.

More…

Measurement of inclusive $e p$ cross sections at high $Q^2$ at $\sqrt s =$ 225 and 252 GeV and of the longitudinal proton structure function $F_L$ at HERA

The H1 collaboration Andreev, V. ; Baghdasaryan, A. ; Baghdasaryan, S. ; et al.
Eur.Phys.J. C74 (2014) 2814, 2014.
Inspire Record 1269731 DOI 10.17182/hepdata.62536

Inclusive ep double differential cross sections for neutral current deep inelastic scattering are measured with the H1 detector at HERA. The data were taken with a lepton beam energy of 27.6 GeV and two proton beam energies of Ep = 460 and 575 GeV corresponding to centre-of-mass energies of 225 and 252 GeV, respectively. The measurements cover the region of 6.5 *10^{-4}<=x<= 0.65 for 35<=Q^2<=800 GeV^2 up to y = 0.85. The measurements are used together with previously published H1 data at Ep = 920 GeV and lower Q2 data at Ep = 460, 575 and 920 GeV to extract the longitudinal proton structure function FL in the region 1.5<=Q^2 <=800 GeV^2.

51 data tables

The neutral current reduced cross section at Q^2=35 GeV^2 for a proton energy of 460 GeV.

The neutral current reduced cross section at Q^2=45 GeV^2 for a proton energy of 460 GeV.

The neutral current reduced cross section at Q^2=60 GeV^2 for a proton energy of 460 GeV.

More…

Combined Measurement and QCD Analysis of the Inclusive e+- p Scattering Cross Sections at HERA

The H1 ZEUS collaborations Aaron, F.D. ; Abramowicz, H. ; Abt, I. ; et al.
JHEP 1001 (2010) 109, 2010.
Inspire Record 836107 DOI 10.17182/hepdata.58304

A combination is presented of the inclusive deep inelastic cross sections measured by the H1 and ZEUS Collaborations in neutral and charged current unpolarised ep scattering at HERA during the period 1994-2000. The data span six orders of magnitude in negative four-momentum-transfer squared, Q^2, and in Bjorken x. The combination method used takes the correlations of systematic uncertainties into account, resulting in an improved accuracy. The combined data are the sole input in a NLO QCD analysis which determines a new set of parton distributions HERAPDF1.0 with small experimental uncertainties. This set includes an estimate of the model and parametrisation uncertainties of the fit result.

89 data tables

Combined reduced cross section data and F2 for Neutral Current E+ P scattering at Q**2=0.045 GeV**2.

Combined reduced cross section data and F2 for Neutral Current E+ P scattering at Q**2=0.065 GeV**2.

Combined reduced cross section data and F2 for Neutral Current E+ P scattering at Q**2=0.085 GeV**2.

More…

Measurement of the energy dependence of the total photon-proton cross section at HERA

The ZEUS collaboration Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
Phys.Lett. B697 (2011) 184-193, 2011.
Inspire Record 875888 DOI 10.17182/hepdata.57592
2 data tables

Ratios of the cross sections for 3 energy bins. The first DSYS error isthe uncorrelated uncertainty and the second is the correlated uncertainty.

Fitted power law energy dependence.


A Precision Measurement of the Inclusive ep Scattering Cross Section at HERA

The H1 collaboration Aaron, F.D. ; Alexa, C. ; Alimujiang, K. ; et al.
Eur.Phys.J. C64 (2009) 561-587, 2009.
Inspire Record 818546 DOI 10.17182/hepdata.54873

A measurement of the inclusive deep-inelastic neutral current e+p scattering cross section is reported in the region of four-momentum transfer squared, 12&lt;=Q^2&lt;=150 GeV^2, and Bjorken x, 2x10^-4&lt;=x&lt;=0.1. The results are based on data collected by the H1 Collaboration at the ep collider HERA at positron and proton beam energies of E_e=27.6 GeV and E_p=920 GeV, respectively. The data are combined with previously published data, taken at E_p=820 GeV. The accuracy of the combined measurement is typically in the range of 1.3-2%. A QCD analysis at next-to-leading order is performed to determine the parton distributions in the proton based on H1 data.

42 data tables

Data from the 2000 running period at Q**2 There is an additional 1.2 PCT overall normalisation uncertainty not included.

Data from the 2000 running period at Q**2 There is an additional 1.2 PCT overall normalisation uncertainty not included.

Data from the 2000 running period at Q**2 There is an additional 1.2 PCT overall normalisation uncertainty not included.

More…

Measurement of the Longitudinal Proton Structure Function at HERA

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Phys.Lett. B682 (2009) 8-22, 2009.
Inspire Record 817462 DOI 10.17182/hepdata.53740

The reduced cross sections for ep deep inelastic scattering have been measured with the ZEUS detector at HERA at three different centre-of-mass energies, 318, 251 and 225 GeV. From the cross sections, measured double differentially in Bjorken x and the virtuality, Q^2, the proton structure functions FL and F2 have been extracted in the region 5*10^-4 &lt; x &lt;0.007 and 20 &lt; Q^2 &lt; 130 GeV^2.

50 data tables

The reduced cross section at Q**2 = 24 GeV**2 for centre-of-mass energy 318.

The reduced cross section at Q**2 = 32 GeV**2 for centre-of-mass energy 318.

The reduced cross section at Q**2 = 45 GeV**2 for centre-of-mass energy 318.

More…

Measurement of the Inclusive ep Scattering Cross Section at Low Q^2 and x at HERA

The H1 collaboration Aaron, F.D. ; Alexa, C. ; Andreev, V. ; et al.
Eur.Phys.J. C63 (2009) 625-678, 2009.
Inspire Record 817368 DOI 10.17182/hepdata.52425
39 data tables

Reduced cross section as measured in the SVX data sample for Q**2 = 0.20 GeV**2. Additional 3 PCT luminosity uncertainty not included in the total error.

Reduced cross section as measured in the SVX data sample for Q**2 = 0.25 GeV**2. Additional 3 PCT luminosity uncertainty not included in the total error.

Reduced cross section as measured in the SVX data sample for Q**2 = 0.35 GeV**2. Additional 3 PCT luminosity uncertainty not included in the total error.

More…

Measurement of the Proton Structure Function F(L)(x, Q**2) at Low x

The H1 collaboration Aaron, F.D. ; Alexa, C. ; Andreev, V. ; et al.
Phys.Lett. B665 (2008) 139-146, 2008.
Inspire Record 786161 DOI 10.17182/hepdata.45340

A first measurement is reported of the longitudinal proton structure function F_L(x,Q^2) at the ep collider HERA. It is based on inclusive deep inelastic e^+p scattering cross section measurements with a positron beam energy of 27.5 GeV and proton beam energies of 920, 575 and 460 GeV. Employing the energy dependence of the cross section, F_L is measured in a range of squared four-momentum transfers 12 &lt; Q^2 &lt; 90 GeV^2 and low Bjorken x 0.00024 &lt; x &lt; 0.0036. The F_L values agree with higher order QCD calculations based on parton densities obtained using cross section data previously measured at HERA.

9 data tables

The measured longitudinal proton structure function FL at Q**2 = 12 GeV**2 extracted from the combined 920,575 and 450 GeV proton energy data.

The measured longitudinal proton structure function FL at Q**2 = 15 GeV**2 extracted from the combined 920,575 and 450 GeV proton energy data.

The measured longitudinal proton structure function FL at Q**2 = 20 GeV**2 extracted from the combined 920,575 and 450 GeV proton energy data.

More…

Leading neutron energy and pT distributions in deep inelastic scattering and photoproduction at HERA

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Nucl.Phys. B776 (2007) 1-37, 2007.
Inspire Record 744787 DOI 10.17182/hepdata.45630

The production of energetic neutrons in $ep$ collisions has been studied with the ZEUS detector at HERA. The neutron energy and $p_T^2$ distributions were measured with a forward neutron calorimeter and tracker in a $40 \pb^{-1}$ sample of inclusive deep inelastic scattering (DIS) data and a $6 \pb^{-1}$ sample of photoproduction data. The neutron yield in photoproduction is suppressed relative to DIS for the lower neutron energies and the neutrons have a steeper $p_T^2$ distribution, consistent with the expectation from absorption models. The distributions are compared to HERA measurements of leading protons. The neutron energy and transverse-momentum distributions in DIS are compared to Monte Carlo simulations and to the predictions of particle exchange models. Models of pion exchange incorporating absorption and additional secondary meson exchanges give a good description of the data.

35 data tables

Ratio of leading neutron to inclusive cross sections integrated to the full PT range.

Normalized double differential cross sections for leading neutron production for the full DIS sample. Statistical errors only are given.

Normalized double differential cross sections for leading neutron production for the full DIS sample. Statistical errors only are given.

More…

Precise determination of the spin structure function g(1) of the proton, deuteron and neutron

The HERMES collaboration Airapetian, A. ; Akopov, N. ; Akopov, Z. ; et al.
Phys.Rev. D75 (2007) 012007, 2007.
Inspire Record 726689 DOI 10.17182/hepdata.11211

Precise measurements of the spin structure functions of the proton $g_1^p(x,Q^2)$ and deuteron $g_1^d(x,Q^2)$ are presented over the kinematic range $0.0041 \leq x \leq 0.9$ and $0.18 $ GeV$^2$ $\leq Q^2 \leq 20$ GeV$^2$. The data were collected at the HERMES experiment at DESY, in deep-inelastic scattering of 27.6 GeV longitudinally polarized positrons off longitudinally polarized hydrogen and deuterium gas targets internal to the HERA storage ring. The neutron spin structure function $g_1^n$ is extracted by combining proton and deuteron data. The integrals of $g_1^{p,d}$ at $Q^2=5$ GeV$^2$ are evaluated over the measured $x$ range. Neglecting any possible contribution to the $g_1^d$ integral from the region $x \leq 0.021$, a value of $0.330 \pm 0.011\mathrm{(theo.)}\pm0.025\mathrm{(exp.)}\pm 0.028$(evol.) is obtained for the flavor-singlet axial charge $a_0$ in a leading-twist NNLO analysis.

23 data tables

Integrals of G1 for P, DEUT and N targets.. The second DSYS systematic error is due to the uncertainty in the parameterizations (R, F2, A2, Azz, omegaD).. The third DSYS systematic error is due to the uncertainty in evolving to a common Q**2.

Integrals of G1 for the Non-Singlet contributions.. The second DSYS systematic error is due to the uncertainty in the parameterizations (R, F2, A2, Azz, omegaD).. The third DSYS systematic error is due to the uncertainty in evolving to a common Q**2. Axis error includes +- 5.2/5.2 contribution.

Integrals of G1 over different X ranges for P target at various Q*2 values. The second DSYS systematic error is due to the uncertainty in the parameterizations (R, F2, A2, Azz, omegaD).. The third DSYS systematic error is due to the uncertainty in evolving to a common Q**2. Axis error includes +- 5.2/5.2 contribution.

More…

Measurement of high-Q**2 deep inelastic scattering cross sections with a longitudinally polarised positron beam at HERA

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Phys.Lett. B637 (2006) 210-222, 2006.
Inspire Record 710347 DOI 10.17182/hepdata.45995

The cross sections for charged and neutral current deep inelastic scattering in e^+p collisions with a longitudinally polarised positron beam have been measured using the ZEUS detector at HERA. The results, based on data corresponding to an integrated luminosity of 23.8 pb^-1 at sqrt(s) = 318 GeV, are given for both e^+p charged current and neutral current deep inelastic scattering for both positive and negative values of the longitudinal polarisation of the positron beam. Single differential cross sections are presented for the kinematic region Q^2 > 200 GeV^2 . The measured cross sections are compared to the predictions of the Standard Model. A fit to the data yields sigma^CC (P_e = -1) = 7.4 +/- 3.9 (stat.) +/- 1.2 (syst.) pb, which is consistent within two standard deviations with the absence of right-handed charged currents in the Standard Model.

5 data tables

Total cross sections for the E+ P CC DIS at Q**2 > 200 GeV for the two different longitudinal positron polarizations and extrapolated with a linear fit to a polarization of -1.0 (including earlier unpolarized data).

E+ P CC DIS cross section as a function of Q**2.

E+ P CC DIS cross section as a function of X.

More…

High Q**2 neutral current cross-sections in e+ p deep inelastic scattering at s**(1/2) = 318-GeV

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Krakauer, D. ; et al.
Phys.Rev. D70 (2004) 052001, 2004.
Inspire Record 636641 DOI 10.17182/hepdata.46282

Cross sections for e^+p neutral current deep inelastic scattering have been measured at a centre-of-mass energy of sqrt{s}=318 GeV with the ZEUS detector at HERA using an integrated luminosity of 63.2 pb^-1. The double-differential cross section, d^2sigma/dxdQ^2, is presented for 200 GeV^2 < Q^2 < 30000 GeV^2 and for 0.005 < x < 0.65. The single-differential cross-sections dsigma/dQ^2, dsigma/dx and dsigma/dy are presented for Q^2 > 200 GeV^2. The effect of Z-boson exchange is seen in dsigma/dx measured for Q^2 > 10000 GeV^2. The data presented here were combined with ZEUS e^+p neutral current data taken at sqrt{s}=300 GeV and the structure function F_2^{em} was extracted. All results agree well with the predictions of the Standard Model.

38 data tables

The single differential DSIG/DQ**2 cross section corrected to the electroweak Born level. See next table for a breakdown of the systematic errors.

Systematic errors with bin to bin correlations for the cross section DSIG/DQ**2.

Single differential cross section DSIG/DX for a Q**2 cut of 200 GeV**2 corrected to the electroweak Born level.

More…

Measurement and QCD analysis of neutral and charged current cross-sections at HERA

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Eur.Phys.J. C30 (2003) 1-32, 2003.
Inspire Record 616311 DOI 10.17182/hepdata.11903

The inclusive e^+ p single and double differential cross sections for neutral and charged current processes are measured with the H1 detector at HERA. The data were taken in 1999 and 2000 at a centre-of-mass energy of \sqrt{s} = 319 GeV and correspond to an integrated luminosity of 65.2 pb^-1. The cross sections are measured in the range of four-momentum transfer squared Q^2 between 100 and 30000 GeV^2 and Bjorken x between 0.0013 and 0.65. The neutral current analysis for the new e^+ p data and the earlier e^- p data taken in 1998 and 1999 is extended to small energies of the scattered electron and therefore to higher values of inelasticity y, allowing a determination of the longitudinal structure function F_L at high Q^2 (110 - 700 GeV^2). A new measurement of the structure function x F_3 is obtained using the new e^+ p and previously published e^\pm p neutral current cross section data at high Q^2. These data together with H1 low Q^2 precision data are further used to perform new next-to-leading order QCD analyses in the framework of the Standard Model to extract flavour separated parton distributions in the proton.

21 data tables

The NC cross section DSIG/DQ**2. There is an additional 1.5 PCT normalization uncertainty.

The CC cross section DSIG/DQ**2. There is an additional 1.5 PCT normalization uncertainty.

The NC cross section DSIG/DX for Q**2 > 1000 GeV**2. There is an additional 1.5 PCT normalization uncertainty.

More…

The Q**2 dependence of the generalized Gerasimov-Drell-Hearn integral for the deuteron, proton and neutron

The HERMES collaboration Airapetian, A. ; Akopov, N. ; Akopov, Z. ; et al.
Eur.Phys.J. C26 (2003) 527-538, 2003.
Inspire Record 600098 DOI 10.17182/hepdata.45286

The Gerasimov-Drell-Hearn (GDH) sum rule connects the anomalous contribution to the magnetic moment of the target nucleus with an energy-weighted integral of the difference of the helicity-dependent photoabsorption cross sections. The data collected by HERMES with a deuterium target are presented together with a re-analysis of previous measurements on the proton. This provides a measurement of the generalised GDH integral covering simultaneously the nucleon-resonance and the deep inelastic scattering regions. The contribution of the nucleon-resonance region is seen to decrease rapidly with increasing $Q^2$. The DIS contribution is sizeable over the full measured range, even down to the lowest measured $Q^2$. As expected, at higher $Q^2$ the data are found to be in agreement with previous measurements of the first moment of $g_1$. From data on the deuteron and proton, the GDH integral for the neutron has been derived and the proton--neutron difference evaluated. This difference is found to satisfy the fundamental Bjorken sum rule at $Q^2 = 5$ GeV$^2$.

6 data tables

The value of the GDH integral, as a function of Q**2 , for the deuteron in three W**2 regions, the total ( > 1 GeV**2), the nucleon resonance ( 1 to 4.2 GeV**2) and the DIS (4.2 to 45 GeV**2).

The value of the GDH integral, as a function of Q**2 , for the proton in three W**2 regions, the total ( > 1 GeV**2), the nucleon resonance ( 1 to 4.2 GeV**2) and the DIS (4.2 to 45 GeV**2).

The value of the GDH integral, as a function of Q**2 , for the neutron in three W**2 regions, the total ( > 1 GeV**2), the nucleon resonance ( 1 to 4.2 GeV**2) and the DIS (4.2 to 45 GeV**2).