Inclusive Measurements of Inelastic Electron and Positron Scattering from Unpolarized Hydrogen and Deuterium Targets

The HERMES collaboration Airapetian, A. ; Akopov, N. ; Akopov, Z. ; et al.
JHEP 05 (2011) 126, 2011.
Inspire Record 894309 DOI 10.17182/hepdata.66147

Results of inclusive measurements of inelastic electron and positron scattering from unpolarized protons and deuterons at the HERMES experiment are presented. The structure functions $F_2^p$ and $F_2^d$ are determined using a parameterization of existing data for the longitudinal-to-transverse virtual-photon absorption cross-section ratio. The HERMES results provide data in the ranges $0.006\leq x\leq 0.9$ and 0.1 GeV$^2\leq Q^2\leq$ 20 GeV$^2$, covering the transition region between the perturbative and the non-perturbative regimes of QCD in a so-far largely unexplored kinematic region. They are in agreement with existing world data in the region of overlap. The measured cross sections are used, in combination with data from other experiments, to perform fits to the photon-nucleon cross section using the functional form of the ALLM model. The deuteron-to-proton cross-section ratio is also determined.

3 data tables

Results on the differential Born cross section $\frac{d^2\sigma^p}{dx\,dQ^2}$ and $F_2^p$. The statistical uncertainty $\delta_{stat.}$ and the systematic uncertainties $\delta_{PID}$ (particle identification), $\delta_{model}$ (model dependence outside the acceptance), $\delta_{mis.}$ (misalignment), and $\delta_{rad.}$ (Bethe-Heitler efficiencies) are given in percent. Corresponding $x$ bin numbers and $Q^2$ bin numbers and the average values $\langle x \rangle$ and $\langle {Q^2} \rangle$ are listed in the first four columns. The overall normalization uncertainty is 7.6 %. The structure function $F_2^p$ is derived using the parameterization $R=R_{1998}$.

Results on the differential Born cross section $\frac{d^2\sigma^d}{dx\,dQ^2}$ and $F_2^d$. The statistical uncertainty $\delta_{stat.}$ and the systematic uncertainties $\delta_{PID}$ (particle identification), $\delta_{model}$ (model dependence outside the acceptance), $\delta_{mis.}$ (misalignment), and $\delta_{rad.}$ (Bethe-Heitler efficiencies), are given in percent. Corresponding $x$ bin numbers and $Q^2$ bin numbers and the average values $\langle x \rangle$ and $\langle{Q^2}\rangle$ are listed in the first four columns. The overall normalization uncertainty is 7.5 %. The structure function $F_2^d$ is derived using the parameterization $R=R_{1998}$.

Results on the inelastic Born cross-section ratio ${\sigma^d}/{\sigma^p}$. The statistical uncertainty $\delta_{stat.}$, the systematic uncertainty $\delta_{rad.}$ due to radiative corrections and $\delta_{model}$ due to the model dependence outside the acceptance are given in percent. The average values of $x$ and $Q^2$ are listed in the first two columns. The overall normalization uncertainty is 1.4$\%$.


Measurement of the A-dependence of deep inelastic electron scattering

Gomez, J. ; Arnold, R.G. ; Bosted, Peter E. ; et al.
Phys.Rev.D 49 (1994) 4348-4372, 1994.
Inspire Record 359103 DOI 10.17182/hepdata.22575

Cross sections for deep-inelastic electron scattering from liquid deuterium, gaseous He4, and solid Be, C, Al, Ca, Fe, Ag, and Au targets were measured at the Stanford Linear Accelerator Center using electrons with energies ranging from 8 to 24.5 GeV. These data cover a range in the Bjorken variable x from 0.089 to 0.8, and in momentum transfer Q2 from 2 to 15 (GeV/c)2. The ratios of cross sections per nucleon (σAσd)is for isoscalar nuclei have been extracted from the data. These ratios are greater than unity in the range 0.1<x<0.3, while for 0.3<x<0.8 they are less than unity and decrease logarithmically with atomic weight A, or linearly with average nuclear density. No Q2 dependence in the ratios was observed over the kinematic range of the data. These results are compared to various theoretical predictions.

26 data tables

Additional overall systematic error of 2.1 pct plus a target to target systematic error of 1 pct.

Additional overall systematic error of 2.1 pct plus a target to target systematic error of 2.1 pct.

Additional overall systematic error of 2.1 pct plus a target to target systematic error of 0.6 pct.

More…

Measurement of kinematic and nuclear dependence of R = sigma-L / sigma-t in deep inelastic electron scattering

Dasu, S. ; deBarbaro, P. ; Bodek, A. ; et al.
Phys.Rev.D 49 (1994) 5641-5670, 1994.
Inspire Record 360765 DOI 10.17182/hepdata.22468

We report results on a precision measurement of the ratio R=σLσT in deep inelastic electron-nucleon scattering in the kinematic range 0.2≤x≤0.5 and 1≤Q2≤10 (GeV/c)2. Our results show, for the first time, a clear falloff of R with increasing Q2. Our R results are in agreement with QCD predictions only when corrections for target mass effects and some additional higher twist effects are included. At small x, the data on R favor structure functions with a large gluon contribution. We also report results on the differences RA−RD and the cross section ratio σAσD between Fe and Au nuclei and the deuteron. Our results for RA−RD are consistent with zero for all x, Q2 indicating that possible contributions to R from nuclear higher twist effects and spin-0 constituents in nuclei are not different from those in nucleons. The ratios σAσD from all recent experiments, at all x, Q2 values, are now in agreement.

31 data tables

No description provided.

No description provided.

No description provided.

More…

Inclusive electron scattering from nuclei at x approximately = 1

Arrington, J. ; Anthony, P. ; Arnold, R.G. ; et al.
Phys.Rev.C 53 (1996) 2248-2251, 1996.
Inspire Record 394586 DOI 10.17182/hepdata.25857

The inclusive A(e,e') cross section for $x \simeq 1$ was measured on $~2$H, C, Fe, and Au for momentum transfers $Q~2$ from 1-7 (GeV/c)$~2$. The scaling behavior of the data was examined in the region of transition from y-scaling to x-scaling. Throughout this transitional region, the data exhibit $\xi$-scaling, reminiscent of the Bloom-Gilman duality seen in free nucleon scattering.

3 data tables

No description provided.

No description provided.

No description provided.


Measurement of Parity-Violating Asymmetry in Electron-Deuteron Inelastic Scattering

Wang, D. ; Pan, K. ; Subedi, R. ; et al.
Phys.Rev.C 91 (2015) 045506, 2015.
Inspire Record 1327482 DOI 10.17182/hepdata.72848

The parity-violating asymmetries between a longitudinally-polarized electron beam and an unpolarized deuterium target have been measured recently. The measurement covered two kinematic points in the deep inelastic scattering region and five in the nucleon resonance region. We provide here details of the experimental setup, data analysis, and results on all asymmetry measurements including parity-violating electron asymmetries and those of inclusive pion production and beam-normal asymmetries. The parity-violating deep-inelastic asymmetries were used to extract the electron-quark weak effective couplings, and the resonance asymmetries provided the first evidence for quark-hadron duality in electroweak observables. These electron asymmetries and their interpretation were published earlier, but are presented here in more detail.

5 data tables

Asymmetry results on $\vec e-^2$H parity-violating scattering from the PVDIS experiment at JLab.

Asymmetry results on $\vec e-^2$H parity-violating scattering from the PVDIS experiment at JLab, for RES I settings.

Asymmetry results on $\vec e-^2$H parity-violating scattering from the PVDIS experiment at JLab, for RES II settings.

More…

Precision measurement of the proton and deuteron spin structure functions g2 and asymmetries A(2).

The E155 collaboration Anthony, P.L. ; Arnold, R.G. ; Averett, T. ; et al.
Phys.Lett.B 553 (2003) 18-24, 2003.
Inspire Record 585675 DOI 10.17182/hepdata.27033

We have measured the spin structure functions g2p and g2d and the virtual photon asymmetries A2p and A2d over the kinematic range 0.02 < x < 0.8 and 0.7 < Q^2 < 20 GeV^2 by scattering 29.1 and 32.3 GeV longitudinally polarized electrons from transversely polarized NH3 and 6LiD targets. Our measured g2 approximately follows the twist-2 Wandzura-Wilczek calculation. The twist-3 reduced matrix elements d2p and d2n are less than two standard deviations from zero. The data are inconsistent with the Burkhardt-Cottingham sum rule if there is no pathological behavior as x->0. The Efremov-Leader-Teryaev integral is consistent with zero within our measured kinematic range. The absolute value of A2 is significantly smaller than the sqrt[R(1+A1)/2] limit.

7 data tables

Values of A2 and X*G2 from proton and deuterium target data at mean electron scattering angle of 2.75 degrees and incident energy 29.1 GeV. Errors shown are statistical only.

Values of A2 and X*G2 from proton and deuterium target data at mean electron scattering angle of 5.5 degrees and incident energy 29.1 GeV. Errors shown are statistical only.

Values of A2 and X*G2 from proton and deuterium target data at mean electron scattering angle of 10.5 degrees and incident energy 29.1 GeV. Errors shown are statistical only.

More…

Measurement of the proton and deuteron spin structure functions g2 and asymmetry A(2).

The E155 collaboration Anthony, P.L. ; Arnold, R.G. ; Averett, T. ; et al.
Phys.Lett.B 458 (1999) 529-535, 1999.
Inspire Record 493768 DOI 10.17182/hepdata.27072

We have measured the spin structure functions g2p and g2d and the virtual photon asymmetries A2p and A2d over the kinematic range 0.02 < x < 0.8 and 1.0 < Q^2 < 30(GeV/c)^2 by scattering 38.8 GeV longitudinally polarized electrons from transversely polarized NH3 and 6LiD targets.The absolute value of A2 is significantly smaller than the sqrt{R} positivity limit over the measured range, while g2 is consistent with the twist-2 Wandzura-Wilczek calculation. We obtain results for the twist-3 reduced matrix elements d2p, d2d and d2n. The Burkhardt-Cottingham sum rule integral - int(g2(x)dx) is reported for the range 0.02 < x < 0.8.

4 data tables

2.75 degree spectrometer data.

5.5 degree spectrometer data.

10.5 degree spectrometer data.

More…

Experimental Studies of the Neutron and Proton Electromagnetic Structure Functions

Bodek, A. ; Breidenbach, Martin ; Dubin, D.L. ; et al.
Phys.Rev.D 20 (1979) 1471-1552, 1979.
Inspire Record 140185 DOI 10.17182/hepdata.4325

We have carried out an experimental study of the neutron and proton deep-inelastic electromagnetic structure functions. The structure functions were extracted from electron-proton and electron-deuteron differential cross sections measured in three experiments spanning the angles 6°, 10°, 15°, 18°, 19°, 26°, and 34°. We report primarily on the large-angle (15°-34°) measurements. Neutron cross sections were extracted from the deuteron data using an impulse approximation. Our results are consistent with the hypothesis that the nucleon is composed of pointlike constituents. The variation of the cross section with angle suggests that the hypothetical constituents have spin ½. The data for σnσp, the ratio of the neutron and proton differential cross sections, are in the range 0.25 to 1.0, and are within the limits imposed by the quark model. Detailed studies of the structure functions were made for a range of the scaling variable ω from ω=1.3 to ω=10.0, and for a range of invariant four-momentum transfer Q2 from 1.0 to 20.0 GeV2. These studies indicate that the structure functions approximately scale in the variable ω, although significant deviations from scaling in ω are apparent in the region 1.3<ω<3.3. These deviations from scaling are in the same direction and of similar magnitude for both neutron and proton. The interpretation of the data in terms of various theoretical models is discussed.

100 data tables

No description provided.

No description provided.

No description provided.

More…

Precision Measurement of R = $\sigma^-$l / $\sigma^- T$ and F(2) in Deep Inelastic Electron Scattering

Dasu, S. ; De Barbaro, P. ; Bodek, A. ; et al.
Phys.Rev.Lett. 61 (1988) 1061, 1988.
Inspire Record 262063 DOI 10.17182/hepdata.20079

We report new results on a precision measurement of the ratio R=σLσT and the structure function F2 for deep-inelastic electron-nucleon scattering in the kinematic range 0.2≤x≤0.5 and 1≤Q2≤10 (GeV/c)2. Our results show, for the first time, a clear falloff of R with increasing Q2. Our R and F2 results are in good agreement with QCD predictions only when corrections for target-mass effects are included.

9 data tables

2.6 pct rad length target.

2.6 pct rad length target.

2.6 pct rad length target.

More…

Measurement of the Difference in R = $\sigma^-$l / $\sigma^-$t and $\sigma$(a) / $\sigma(D$) in Deep Inelastic $e D$, $e$ Fe and $e$ Au Scattering

Dasu, S. ; de Barbaro, P. ; Bodek, A. ; et al.
Phys.Rev.Lett. 60 (1988) 2591, 1988.
Inspire Record 260760 DOI 10.17182/hepdata.20155

We measured the differences in R=σLσT and the cross-section ratio σAσD in deep-inelastic electron scattering from D, Fe, and Au nuclei in the kinematic range 0.2≤x≤0.5 and 1≤Q2≤5 (Gev/c)2. Our results for RA−RD are consistent with zero for all x and Q2, indicating that possible contributions to R from nuclear higher-twist effects and spin-0 constituents in nuclei are not different from those in nucleons. The European Muon Collaboration effect is reconfirmed, and the low-x data from all recent experiments, at all Q2, are now in agreement.

4 data tables

No description provided.

No description provided.

No description provided.

More…