Measurement of the A-dependence of deep inelastic electron scattering

Gomez, J. ; Arnold, R.G. ; Bosted, Peter E. ; et al.
Phys.Rev.D 49 (1994) 4348-4372, 1994.
Inspire Record 359103 DOI 10.17182/hepdata.22575

Cross sections for deep-inelastic electron scattering from liquid deuterium, gaseous He4, and solid Be, C, Al, Ca, Fe, Ag, and Au targets were measured at the Stanford Linear Accelerator Center using electrons with energies ranging from 8 to 24.5 GeV. These data cover a range in the Bjorken variable x from 0.089 to 0.8, and in momentum transfer Q2 from 2 to 15 (GeV/c)2. The ratios of cross sections per nucleon (σAσd)is for isoscalar nuclei have been extracted from the data. These ratios are greater than unity in the range 0.1<x<0.3, while for 0.3<x<0.8 they are less than unity and decrease logarithmically with atomic weight A, or linearly with average nuclear density. No Q2 dependence in the ratios was observed over the kinematic range of the data. These results are compared to various theoretical predictions.

26 data tables

Additional overall systematic error of 2.1 pct plus a target to target systematic error of 1 pct.

Additional overall systematic error of 2.1 pct plus a target to target systematic error of 2.1 pct.

Additional overall systematic error of 2.1 pct plus a target to target systematic error of 0.6 pct.

More…

Measurement of kinematic and nuclear dependence of R = sigma-L / sigma-t in deep inelastic electron scattering

Dasu, S. ; deBarbaro, P. ; Bodek, A. ; et al.
Phys.Rev.D 49 (1994) 5641-5670, 1994.
Inspire Record 360765 DOI 10.17182/hepdata.22468

We report results on a precision measurement of the ratio R=σLσT in deep inelastic electron-nucleon scattering in the kinematic range 0.2≤x≤0.5 and 1≤Q2≤10 (GeV/c)2. Our results show, for the first time, a clear falloff of R with increasing Q2. Our R results are in agreement with QCD predictions only when corrections for target mass effects and some additional higher twist effects are included. At small x, the data on R favor structure functions with a large gluon contribution. We also report results on the differences RA−RD and the cross section ratio σAσD between Fe and Au nuclei and the deuteron. Our results for RA−RD are consistent with zero for all x, Q2 indicating that possible contributions to R from nuclear higher twist effects and spin-0 constituents in nuclei are not different from those in nucleons. The ratios σAσD from all recent experiments, at all x, Q2 values, are now in agreement.

31 data tables

No description provided.

No description provided.

No description provided.

More…

Measurements of the proton and deuteron spin structure functions g1 and g2.

The E143 collaboration Abe, K. ; Akagi, T. ; Anthony, P.L. ; et al.
Phys.Rev.D 58 (1998) 112003, 1998.
Inspire Record 467140 DOI 10.17182/hepdata.22265

Measurements are reported of the proton and deuteron spin structure functions g1 at beam energies of 29.1, 16.2, and 9.7 GeV and g2 at a beam energy of 29.1 GeV. The integrals of g1 over x have been evaluated at fixed Q**2 = 3 (GeV/c)**2 using the full data set. The Q**2 dependence of the ratio g1/F1 was studied and found to be small for Q**2 > 1 (GeV/c)**2. Within experimental precision the g2 data are well-described by the Wandzura-Wilczek twist-2 contribution. Twist-3 matrix elements were extracted and compared to theoretical predictions. The asymmetry A2 was measured and found to be significantly smaller than the positivity limit for both proton and deuteron targets. A2 for the proton is found to be positive and inconsistent with zero. Measurements of g1 in the resonance region show strong variations with x and Q**2, consistent with resonant amplitudes extracted from unpolarized data. These data allow us to study the Q**2 dependence of the first moments of g1 below the scaling region.

33 data tables

Averaged A1(P) for the DIS (W**2 > 4 GeV) region. Additional normalization uncertainty 3.7%.

Detailed A1(P) for the DIS (W**2 > 4 GeV) region. Additional normalization uncertainty 3.7%.

Detailed A1(P) for the DIS (W**2 > 4 GeV) region. Additional normalization uncertainty 3.7%.

More…

Inclusive electron scattering from nuclei at x approximately = 1

Arrington, J. ; Anthony, P. ; Arnold, R.G. ; et al.
Phys.Rev.C 53 (1996) 2248-2251, 1996.
Inspire Record 394586 DOI 10.17182/hepdata.25857

The inclusive A(e,e') cross section for $x \simeq 1$ was measured on $~2$H, C, Fe, and Au for momentum transfers $Q~2$ from 1-7 (GeV/c)$~2$. The scaling behavior of the data was examined in the region of transition from y-scaling to x-scaling. Throughout this transitional region, the data exhibit $\xi$-scaling, reminiscent of the Bloom-Gilman duality seen in free nucleon scattering.

3 data tables

No description provided.

No description provided.

No description provided.


Precision Measurement of R = $\sigma^-$l / $\sigma^- T$ and F(2) in Deep Inelastic Electron Scattering

Dasu, S. ; De Barbaro, P. ; Bodek, A. ; et al.
Phys.Rev.Lett. 61 (1988) 1061, 1988.
Inspire Record 262063 DOI 10.17182/hepdata.20079

We report new results on a precision measurement of the ratio R=σLσT and the structure function F2 for deep-inelastic electron-nucleon scattering in the kinematic range 0.2≤x≤0.5 and 1≤Q2≤10 (GeV/c)2. Our results show, for the first time, a clear falloff of R with increasing Q2. Our R and F2 results are in good agreement with QCD predictions only when corrections for target-mass effects are included.

9 data tables

2.6 pct rad length target.

2.6 pct rad length target.

2.6 pct rad length target.

More…

Measurement of the Difference in R = $\sigma^-$l / $\sigma^-$t and $\sigma$(a) / $\sigma(D$) in Deep Inelastic $e D$, $e$ Fe and $e$ Au Scattering

Dasu, S. ; de Barbaro, P. ; Bodek, A. ; et al.
Phys.Rev.Lett. 60 (1988) 2591, 1988.
Inspire Record 260760 DOI 10.17182/hepdata.20155

We measured the differences in R=σLσT and the cross-section ratio σAσD in deep-inelastic electron scattering from D, Fe, and Au nuclei in the kinematic range 0.2≤x≤0.5 and 1≤Q2≤5 (Gev/c)2. Our results for RA−RD are consistent with zero for all x and Q2, indicating that possible contributions to R from nuclear higher-twist effects and spin-0 constituents in nuclei are not different from those in nucleons. The European Muon Collaboration effect is reconfirmed, and the low-x data from all recent experiments, at all Q2, are now in agreement.

4 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of elastic electron - neutron scattering and inelastic electron - deuteron scattering cross-sections at high momentum transfer

Rock, Stephen ; Arnold, R.G. ; Bosted, Peter E. ; et al.
Phys.Rev.D 46 (1992) 24-44, 1992.
Inspire Record 322422 DOI 10.17182/hepdata.18708

We have measured inelastic electron-deuteron, electron-proton, and electron-aluminum cross sections at 10° in the kinematic region between elastic deuteron scattering and the second resonance region at six beam energies between 9.8 and 21 GeV. The elastic electron-neutron cross section was extracted from the quasielastic data at Q2=2.5,4.0,6.0,8.0, and 10.0 (GeV/c)2. The ratio of elastic cross sections σnσp falls with increasing Q2 above 6 (GeV/c)2. The inelastic data are compatible either with y scaling (scattering from a single nucleon) or with ξ scaling (scattering from quarks).

18 data tables

Elastic proton cross sections.

No description provided.

No description provided.

More…

Measurement of the proton and deuteron spin structure function g2 and asymmetry A2.

The E143 collaboration Abe, K. ; Akagi, T. ; Anthony, P.L. ; et al.
Phys.Rev.Lett. 76 (1996) 587-591, 1996.
Inspire Record 400029 DOI 10.17182/hepdata.19584

We have measured proton and deuteron virtual photon-nucleon asymmetries A2p and A2d and structure functions g2p and g2d over the range 0.03<x<0.8 and 1.3<Q2<10 (GeV/c)2 by inelastically scattering polarized electrons off polarized ammonia targets. Results for A2 are significantly smaller than the positivity limit sqrt(R) for both targets. Within experimental precision, the g2 data are well-described by the twist-2 contribution g2WW. Twist-3 matrix elements have been extracted and are compared to theorectical predictions.

8 data tables

Proton data measured in the 4.5 degree spectrometer.

Proton data measured in the 7.0 degree spectrometer.

Deuteron data measured in the 4.5 degree spectrometer.

More…

Precision measurement of the deuteron spin structure function g1(d)

The E143 collaboration Abe, K. ; Akagi, T. ; Anthony, P.L. ; et al.
Phys.Rev.Lett. 75 (1995) 25-28, 1995.
Inspire Record 393667 DOI 10.17182/hepdata.19611

We report on a high-statistics measurement of the deuteron spin structure function g1d at a beam energy of 29 GeV in the kinematic range 0.029<x<0.8 and 1<Q2<10 (GeV /c)2. The integral γ1d=∫1g1ddx evaluated at fixed Q2=3 (GeV /c)2 gives 0.042±0.003(stat)±0.004(syst). Combining this result with our earlier measurement of g1p, we find γ1p−γ1n=0.163±0.010(stat)±0.016(syst), which agrees with the prediction of the Bjorken sum rule with O(αs3) corrections, γ1p−γ1n=0.171±0.008. We find the quark contribution to the proton helicity to be Δq=0.30±0.06.

2 data tables

No description provided.

Values of G1 computed assuming G1/F1 is independent of Q**2 and evaluated at Q**2 = 3 GeV**2.


Measurement of the proton and deuteron spin structure function g1 in the resonance region.

The E143 collaboration Abe, K. ; Akagi, T. ; Anthony, P.L. ; et al.
Phys.Rev.Lett. 78 (1997) 815-819, 1997.
Inspire Record 426735 DOI 10.17182/hepdata.19582

We have measured the proton and deuteron spin structure functions g_1^p and g_1^d in the region of the nucleon resonances for W^2 &lt; 5 GeV^2 and $Q^2\simeq 0.5$ and $Q^2\simeq 1.2$ GeV^2 by inelastically scattering 9.7 GeV polarized electrons off polarized $^{15}NH_3$ and $^{15}ND_3$ targets. We observe significant structure in g_1^p in the resonance region. We have used the present results, together with the deep-inelastic data at higher W^2, to extract $\Gamma(Q^2)\equiv\int_0^1 g_1(x,Q^2) dx$. This is the first information on the low-Q^2 evolution of Gamma toward the Gerasimov-Drell-Hearn limit at Q^2 = 0.

8 data tables

The integral of the structure functions g1 for the resonance region W**2 < 4 GeV**2.

The integral of the structure functions g1 for the resonance region W**2 < 4 GeV**2.

The integral of the structure functions g1 for the full W region including the deep-inelastic region as given by fits to the world's data.

More…