Measurements of the Q**2 dependence of the proton and deuteron spin structure functions g1(p) and g1(d)

The E143 collaboration Abe, K. ; Akagi, T. ; Anthony, P.L. ; et al.
Phys.Lett.B 364 (1995) 61-68, 1995.
Inspire Record 401107 DOI 10.17182/hepdata.28431

The ratio g1/F1 has been measured over the range 0.03<x<0.6 and 0.3<Q2<10 (GeV/c)2 using deep-inelastic scattering of polarized electrons from polarized protons and deuterons. We find g1/F1 to be consistent with no Q2-dependence at fixed x in the deep-inelastic region Q~2>1 (GeV/c)2. A trend is observed for g1/F1 to decrease at lower Q2. Fits to world data with and without a possible Q2-dependence in g1/F1 are in agreement with the Bjorken sum rule, but Delta_q is substantially less than the quark-parton model expectation.

16 data tables

No description provided.

No description provided.

No description provided.

More…

Precision measurement of the deuteron spin structure function g1(d)

The E143 collaboration Abe, K. ; Akagi, T. ; Anthony, P.L. ; et al.
Phys.Rev.Lett. 75 (1995) 25-28, 1995.
Inspire Record 393667 DOI 10.17182/hepdata.19611

We report on a high-statistics measurement of the deuteron spin structure function g1d at a beam energy of 29 GeV in the kinematic range 0.029<x<0.8 and 1<Q2<10 (GeV /c)2. The integral γ1d=∫1g1ddx evaluated at fixed Q2=3 (GeV /c)2 gives 0.042±0.003(stat)±0.004(syst). Combining this result with our earlier measurement of g1p, we find γ1p−γ1n=0.163±0.010(stat)±0.016(syst), which agrees with the prediction of the Bjorken sum rule with O(αs3) corrections, γ1p−γ1n=0.171±0.008. We find the quark contribution to the proton helicity to be Δq=0.30±0.06.

2 data tables

No description provided.

Values of G1 computed assuming G1/F1 is independent of Q**2 and evaluated at Q**2 = 3 GeV**2.


Measurement of kinematic and nuclear dependence of R = sigma-L / sigma-t in deep inelastic electron scattering

Dasu, S. ; deBarbaro, P. ; Bodek, A. ; et al.
Phys.Rev.D 49 (1994) 5641-5670, 1994.
Inspire Record 360765 DOI 10.17182/hepdata.22468

We report results on a precision measurement of the ratio R=σLσT in deep inelastic electron-nucleon scattering in the kinematic range 0.2≤x≤0.5 and 1≤Q2≤10 (GeV/c)2. Our results show, for the first time, a clear falloff of R with increasing Q2. Our R results are in agreement with QCD predictions only when corrections for target mass effects and some additional higher twist effects are included. At small x, the data on R favor structure functions with a large gluon contribution. We also report results on the differences RA−RD and the cross section ratio σAσD between Fe and Au nuclei and the deuteron. Our results for RA−RD are consistent with zero for all x, Q2 indicating that possible contributions to R from nuclear higher twist effects and spin-0 constituents in nuclei are not different from those in nucleons. The ratios σAσD from all recent experiments, at all x, Q2 values, are now in agreement.

31 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of the A-dependence of deep inelastic electron scattering

Gomez, J. ; Arnold, R.G. ; Bosted, Peter E. ; et al.
Phys.Rev.D 49 (1994) 4348-4372, 1994.
Inspire Record 359103 DOI 10.17182/hepdata.22575

Cross sections for deep-inelastic electron scattering from liquid deuterium, gaseous He4, and solid Be, C, Al, Ca, Fe, Ag, and Au targets were measured at the Stanford Linear Accelerator Center using electrons with energies ranging from 8 to 24.5 GeV. These data cover a range in the Bjorken variable x from 0.089 to 0.8, and in momentum transfer Q2 from 2 to 15 (GeV/c)2. The ratios of cross sections per nucleon (σAσd)is for isoscalar nuclei have been extracted from the data. These ratios are greater than unity in the range 0.1<x<0.3, while for 0.3<x<0.8 they are less than unity and decrease logarithmically with atomic weight A, or linearly with average nuclear density. No Q2 dependence in the ratios was observed over the kinematic range of the data. These results are compared to various theoretical predictions.

26 data tables

Additional overall systematic error of 2.1 pct plus a target to target systematic error of 1 pct.

Additional overall systematic error of 2.1 pct plus a target to target systematic error of 2.1 pct.

Additional overall systematic error of 2.1 pct plus a target to target systematic error of 0.6 pct.

More…

Deep Inelastic Structure Functions From Electron Scattering on Hydrogen, Deuterium, and Iron at 0.6-{GeV}$^2 \le Q^2 \le 30$-{GeV}$^2$

Whitlow, L.W. ;
SLAC-0357, 1990.
Inspire Record 295113 DOI 10.17182/hepdata.2722

None

140 data tables

No description provided.

No description provided.

No description provided.

More…

A COMBINED ANALYSIS OF SLAC EXPERIMENTS ON DEEP INELASTIC e p AND e d SCATTERING

Whitlow, L.W. ; Bodek, A. ; Rock, Stephen ; et al.
Nucl.Phys.B Proc.Suppl. 16 (1990) 215-216, 1990.
Inspire Record 280954 DOI 10.17182/hepdata.2721

None

44 data tables

No description provided.

No description provided.

No description provided.

More…

A Precise extraction of R = sigma-L / sigma-T from a global analysis of the SLAC deep inelastic e p and e d scattering cross-sections

Whitlow, L.W. ; Rock, Stephen ; Bodek, A. ; et al.
Phys.Lett.B 250 (1990) 193-198, 1990.
Inspire Record 296980 DOI 10.17182/hepdata.29555

We report the extraction of R = σ L / σ T from a global analysis of eight SLAC deep inelastic experiments on e-p and e-d scattering performed between 1970 and 1985. Values of R p , R d , and R d − R p are determined over the entire SLAC kinematic range: 0.1⩽ x ⩽0.9 and 0.6⩽ Q 2 ⩽20.0 (GeV/ c ) 2 . We find that R p = R d . Measured values of R ( x , Q 2 ) are larger than predictions based on perturbative QCD and on QCD with the inclusion of kinematic target mass terms, indicating that dynamical higher twist effects may be important in the SLAC kinematic range.

13 data tables

No description provided.

Data from experiment E-140.

Global extracting of R from all the experiments.

More…

Precision Measurement of R = $\sigma^-$l / $\sigma^- T$ and F(2) in Deep Inelastic Electron Scattering

Dasu, S. ; De Barbaro, P. ; Bodek, A. ; et al.
Phys.Rev.Lett. 61 (1988) 1061, 1988.
Inspire Record 262063 DOI 10.17182/hepdata.20079

We report new results on a precision measurement of the ratio R=σLσT and the structure function F2 for deep-inelastic electron-nucleon scattering in the kinematic range 0.2≤x≤0.5 and 1≤Q2≤10 (GeV/c)2. Our results show, for the first time, a clear falloff of R with increasing Q2. Our R and F2 results are in good agreement with QCD predictions only when corrections for target-mass effects are included.

9 data tables

2.6 pct rad length target.

2.6 pct rad length target.

2.6 pct rad length target.

More…

Measurement of the Difference in R = $\sigma^-$l / $\sigma^-$t and $\sigma$(a) / $\sigma(D$) in Deep Inelastic $e D$, $e$ Fe and $e$ Au Scattering

Dasu, S. ; de Barbaro, P. ; Bodek, A. ; et al.
Phys.Rev.Lett. 60 (1988) 2591, 1988.
Inspire Record 260760 DOI 10.17182/hepdata.20155

We measured the differences in R=σLσT and the cross-section ratio σAσD in deep-inelastic electron scattering from D, Fe, and Au nuclei in the kinematic range 0.2≤x≤0.5 and 1≤Q2≤5 (Gev/c)2. Our results for RA−RD are consistent with zero for all x and Q2, indicating that possible contributions to R from nuclear higher-twist effects and spin-0 constituents in nuclei are not different from those in nucleons. The European Muon Collaboration effect is reconfirmed, and the low-x data from all recent experiments, at all Q2, are now in agreement.

4 data tables

No description provided.

No description provided.

No description provided.

More…

Electron Scattering at 4-Degrees with Energies of 4.5-GeV - 20-GeV

Stein, S. ; Atwood, W.B. ; Bloom, Elliott D. ; et al.
Phys.Rev.D 12 (1975) 1884, 1975.
Inspire Record 100597 DOI 10.17182/hepdata.4669

This paper presents the results of the analysis of a single-arm inelastic-electron-scattering experiment at an angle of 4°. We present data on the turnon of scaling in the low-q2 region 0.1<q2<1.8, the neutron-proton comparison at large values of the scaling variable ω, resonance excitation, and the shadowing in scattering from heavy nuclei.

21 data tables

No description provided.

No description provided.

No description provided.

More…