Deuteron Photodisintegration at Photon Energies Between 200-{MeV} and 700-{MeV} in Backward Direction

Althoff, K.H. ; Anton, G. ; Bour, D. ; et al.
Z.Phys.C 21 (1983) 149, 1983.
Inspire Record 192906 DOI 10.17182/hepdata.50170

The differential cross section of the deuteron photodisintegration was measured at a protion c.m. angle of 180 degrees and for photon energies between 180 and 730 MeV. The protons were detected in a magnetic spectrometer. The proton energy resolution varied between 30 MeV and 50 MeV FWHM. Since these are the first data at 180 degrees in this energy range a comparison can only be done with data from other laboratories extrapolated to 180 degrees and with theoretical predictions. The agreement with existing calculations is poor. Contributions of dibaryons to the cross section seem not to improve the situation.

1 data table

BEAM ERROR D(E) = 50.000 MEV.


Complete angular distribution measurements of two-body deuteron photodisintegration between 0.5-GeV and 3-GeV.

The CLAS collaboration Mirazita, M. ; Ronchetti, F. ; Rossi, P. ; et al.
Phys.Rev.C 70 (2004) 014005, 2004.
Inspire Record 650821 DOI 10.17182/hepdata.31633

Nearly complete angular distributions of the two-body deuteron photodisintegration differential cross section have been measured using the CLAS detector and the tagged photon beam at JLab. The data cover photon energies between 0.5 and 3.0 GeV and center-of-mass proton scattering angles 10-160 degrees. The data show a persistent forward-backward angle asymmetry over the explored energy range, and are well-described by the non-perturbative Quark Gluon String Model.

4 data tables

Angular distributions of the photodisintegration cross section for angle between 10 and 50 degrees in the CM.

Angular distributions of the photodisintegration cross section for angle between 50 and 90 degrees in the CM.

Angular distributions of the photodisintegration cross section for angle between 90 and 130 degrees in the CM.

More…

High resolution measurements of C-12 (gamma, n) and the implications for the (gamma, N) reaction mechanism at intermediate-energy

Andersson, B-E. ; Adler, J-O. ; Bulychjov, S.A. ; et al.
Phys.Rev.Lett. 71 (1993) 2703-2706, 1993.
Inspire Record 352385 DOI 10.17182/hepdata.19720

High resolution measurements of the reaction C12(γ,n) at Eγ∼58 MeV are presented. The distribution of strength to the resolved bound final states in C11 is compared with that of B11 obtained in previous analogous (γ,p) measurements and the implications for the theoretical description of (γ,N) reactions are discussed. These new results confirm the importance of two-nucleon effects in intermediate energy photon absorption and highlight inadequacies in state-of-the-art microscopic calculations of (γ,N) reactions.

1 data table

No description provided.


Two body photodisintegration of the deuteron up to 2.8-GeV

Belz, J.E. ; Potterveld, D.H. ; Anthony, P. ; et al.
Phys.Rev.Lett. 74 (1995) 646-649, 1995.
Inspire Record 399936 DOI 10.17182/hepdata.19630

Measurements were performed for the photodisintegration cross section of the deuteron for photon energies from 1.6 to 2.8 GeV and center-of-mass angles from 37° to 90°. The measured energy dependence of the cross section at θc.m.=90° is in agreement with the constituent counting rules.

1 data table

Statistical and systematic errors have been added in quadrature. Photon energy and angle (in deg) are in center-of-mass system.