Measurement of differential cross sections for processes $\gamma d\to p n$, $\pi^0 d$, and $p X$ in the energy range of dibaryon resonances

Baba, K. ; Endo, I. ; Fukuma, H. ; et al.
Phys.Rev.C 28 (1983) 286-293, 1983.
Inspire Record 195610 DOI 10.17182/hepdata.26333

The differential cross section for the reactions γd→pn, γd→π0d, and γd→pX has been measured by using a tagged photon beam in the energy range of dibaryon resonances. The most characteristic feature of the data for γd→pn is a forward nonpeaking angular distribution. This behavior is in complete disagreement with the existing predictions which take into account the dibaryon resonances. A phenomenological analysis is made by slightly modifying the model of the Tokyo group, but no satisfactory result is obtained. The data for γd→π0d at large angles show that the differential cross section decreases exponentially as a function of pion angle. A comparison is made with a Glauber model calculation. The result seems to be rather in favor of the existence of dibaryon resonances, but a clear conclusion is not possible because of a lack of more accurate data. In the process γd→pX, a broad peak due to quasifree pion production is observed, but the limitation of experimental sensitivity does not allow us to have a definite conclusion for the dibaryon resonance of mass 2.23 GeV conjectured by the Saclay group.

6 data tables

No description provided.

No description provided.

FOR ANGLES >16 DEG THE OVERALL UNCERTAINTY IN ABSOLUTE NORMALIZATION IS ABOUT 10%.

More…

The ($\gamma$, $p$) Reaction on Light Nuclei in the $\Delta(1232)$ Resonance Region

Homma, S. ; Kanazawa, M. ; Koike, M. ; et al.
Phys.Rev.Lett. 53 (1984) 2536, 1984.
Inspire Record 203334 DOI 10.17182/hepdata.20403

Momentum spectra of protons from the (γ, p) reaction have been measured at θp=30° for H1, H2, He4, Be9, C12, and O16 with a tagged photon beam with energies from 187 to 427 MeV. By analysis of these inclusive proton spectra, cross sections for the pion photoproduction from the quasifree nucleon in the target nucleus and those for the photodisintegration of the quasifree two-nucleon system have been obtained as a function of the photon energy and of the target mass number.

1 data table

NUMERICAL VALUES SUPPLIED BY S. HOMMA.