Phase shift analysis of K+p elastic scattering at 780 MeV/c

Focardi, S. ; Minguzzi-Ranzi, A. ; Monari, L. ; et al.
Phys.Lett.B 24 (1967) 90461 314-317, 1967.
Inspire Record 1389646 DOI 10.17182/hepdata.29618

A phase shift analysis of the K<sup loc="post">+</sup>p elastic scattering at 780 MeV/c has been performed. The experimental differential cross section is best explained by a solution with dominant s wave, negative s wave phase shift (−42.7 ± 1 deg.) and small contributions of p and d waves.

1 data table

Corrected for PI+ P events and scanning efficiency.


K+ nucleus quasielastic scattering

Kormanyos, C.M. ; Peterson, R.J. ; Shepard, J.R. ; et al.
Phys.Rev.Lett. 71 (1993) 2571-2574, 1993.
Inspire Record 356948 DOI 10.17182/hepdata.47080

K$~+$--nucleus quasielastic cross sections measured for a laboratory kaon beam momentum of 705 MeV/$c$ are presented for 3--momentum transfers of 300 and 500 MeV/$c$. The measured differential cross sections for C, Ca and Pb at 500 MeV/$c$ are used to deduce the effective number of nucleons participating in the scattering, which are compared with estimates based on the eikonal approximation. The long mean free path expected for K$~+$ mesons in nuclei is found. Double differential cross sections for C and Ca are compared to relativistic nuclear structure calculations.

1 data table

No description provided.