Production Properties of Q Mesons in K+- p --> K+- pi+ pi- p at 13-GeV

Brandenburg, G.W. ; Carnegie, R.K. ; Cashmore, R.J. ; et al.
Phys.Rev.Lett. 36 (1976) 706, 1976.
Inspire Record 100755 DOI 10.17182/hepdata.21076

The momentum transfer (t′) dependence of the JP=1+K*π and ρK partial waves in the K±π+π− system is presented. The production of the Q1 meson (m∼1300 MeV), which has a large ρK decay mode, obeys approximate s-channel helicity conservation. In contrast the production of the Q2 meson (m∼1400 MeV), which decays predominantly to K*π, satisfies approximate t-channel helicity conservation. Furthermore the Q1 production distributions are virtually identical, whereas the Q2± distributions exhibit a distinct cross-over for |t′|∼0.18 GeV2.

1 data table

No description provided.


Comparison of the Reactions K+- p ---> q+- p at Incident Momentum 8.25-GeV/c

The Athens-Brussels-CERN-Democritos-Liverpool-Mons-Vienna collaboration Stergiou, A. ; Apostolakis, A. ; Michaelides, P. ; et al.
Nucl.Phys.B 102 (1976) 1-19, 1976.
Inspire Record 91607 DOI 10.17182/hepdata.36021

In this paper a comparison of the general features of the reactions K ± p→Q ± p (1) at incident momentum 8.25 GeV/ c is presented. The relevant data derive from events yielding four-constraint fits to the reactions K ± p→K ± π + π − p in exposures of the CERN 2m HBC to RF-separated K + and K − beams. The (K ππ ) effective mass distributions, production angular distributions in the Q region (1.2⩽ M (K ππ )⩽1.5 GeV) and corresponding decay angular distributions are exhibited, and background effects due to N ∗ and Δ production are systematically studied. In particular, it is found that the distributions d σ /d t ′ and d σ /d t for reactions (1) are adequately described by exponential functions over the interval 0.05–0.35 GeV 2 , and exhibit a cross-over effect for momentum transfer squared −0.1 GeV 2 . For both reactions a flattening of d σ /d t ′ for t ′ < 0.05 GeV 2 is observed. By studying the Chew-Low plots and the effects of the different cuts it was found that this flattening cannot be attributed to amplitudes with net s -channel helicity flip different from zero, at least at these energies.

2 data tables

ABOUT 7 PCT RELATIVE NORMALIZATION UNCERTAINTY FOR K+ AND K- SAMPLES.

FITS TO D(SIG)/DT AND D(SIG)/DTP FOR Q+ AND Q- PRODUCTION TO DETERMINE CROSS-OVER POSITIONS. DATA HAVE MASS CUTS TO SELECT K*0 AND REMOVE DEL++ AND DEL0. MIN IS THE MINIMUM VALUE OF -T FOR THE RELEVANT (K PI PI) MASS.