Measurement of the n-p elastic scattering angular distribution at En=10 MeV

Boukharouba, N. ; Bateman, F. B. ; Brient, C. E. ; et al.
Phys.Rev.C 65 (2001) 014004, 2001.
Inspire Record 568789 DOI 10.17182/hepdata.25394

The reported data are given for the mean angles measured rather than for the central angles. The data are normalized to the most recent Evaluated Nuclear Data File evaluated angle-integrated elastic-scattering cross section and refitted with a Legendre polynomial expansion.

1 data table

Measured values of the N-P elastic scattering angular distributions. Data are normalized to the Breit-Hopkins total elastic cross section after radiative capture correction.


The Spin Correlation Parameter and Analyzing Power in $n p$ Elastic Scattering at Intermediate-energies

Abegg, R. ; Ahmad, M. ; Bandyopadhyay, D. ; et al.
Phys.Rev.C 40 (1989) 2684-2696, 1989.
Inspire Record 281880 DOI 10.17182/hepdata.26220

In order to improve existing I=0 phase shift solutions, the spin correlation parameter ANN and the analyzing powers A0N and AN0 have been measured in n-p elastic scattering over an angular range of 50°–150° (c.m.) at three neutron energies (220, 325, and 425 MeV) to an absolute accuracy of ±0.03. The data have a profound effect on various phase parameters, particularly the P11, D23, and ε1 phase parameters which in some cases change by almost a degree. With the exception of the highest energy, the data support the predictions of the latest version of the Bonn potential. Also, the analyzing power data (A0N and AN0) measured at 477 MeV in a different experiment over a limited angular range [60°–80° (c.m.)] are reported here.

10 data tables

The beam analysing power at incident kinetic energy 220 MeV. Additional systematic uncertainty of +- 0.015 and a scalar error of 3.5 PCT.

The beam analysing power at incident kinetic energy 325 MeV. Additional systematic uncertainty of +- 0.018 and a scalar error of 3.1 PCT.

The beam analysing power at incident kinetic energy 425 MeV. Additional systematic uncertainty of +- 0.022 and a scalar error of 3.3 PCT.

More…

New Test of Nucleon-Nucleon Potential Models

Holslin, D. ; McAninch, J. ; Quin, P.A. ; et al.
Phys.Rev.Lett. 61 (1988) 1561-1564, 1988.
Inspire Record 945156 DOI 10.17182/hepdata.20124

We present new measurements of the analyzing power for np scattering at 10.03 MeV accurate to ± 1 × 10−3. A new source of systematic error, related to resonances in n−C12 scattering in the neutron detectors, is discussed. The interaction of the neutron magnetic moment with the Coulomb field of the proton is found to make a significant contribution to the analyzing power at the present level of accuracy. The results are compared to predictions of nucleon-nucleon potential models. New, improved values are reported for the p and d-wave spin-orbit phase-shift splittings.

1 data table

No description provided.