A Comparison of Charged Current Cross-sections and Structure Functions for Neutrino and Anti-neutrinos Beams on Hydrogen and Neon

The BEBC TST Neutrino collaboration Parker, M.A. ; Francois, T. ; Guy, J.G. ; et al.
Nucl.Phys.B 232 (1984) 1-20, 1984.
Inspire Record 192873 DOI 10.17182/hepdata.33899

Using BEBC equipped with a hydrogen-filled neon-surrounded track-sensitive target, the charged current cross sections and structure functions of hydrogen and neon targets traversed by the same neutrinos and antineutrinos are compared directly. The measured total cross-section ratios between hydrogen and neon allow precise total cross-section values for hydrogen to be inferred. Using this normalization, the ν and ν hydrogen data are combined and the quark distributions in free nucleons, parametrised as functions of ξ, are extracted. This free-nucleon parametrisation is then compared directly with the neon data in order to measure nuclear effects such as those recently reported by the EMC collaboration. Only small effects are seen, in excellent agreement with recent SLAC data in a more similar A and q 2 range.

3 data tables

Measured charged current total cross section.

Measured charged current total cross section.

AVERAGE Q**2 IS 6.9GEV**2 FOR NU AND 4.3GEV**2 FOR ANU.


Measurement of the Neutral to Charged Current Cross-section Ratios for Neutrino and Anti-neutrino Interactions on Protons

The WA21 collaboration Jones, G.T. ; Jones, R.W.L. ; Kennedy, B.W. ; et al.
Phys.Lett.B 178 (1986) 329, 1986.
Inspire Record 18429 DOI 10.17182/hepdata.36611

The ratios R vp and R vp of the neutral current to charged current cross sections for neutrino and antineutrino interactions on protons have been measured in BEBC. The beam was the CERN SPS 400 GeV wideband beam. The bubble chamber, equipped with the standard External Muon Identifier, was surrounded with an additional plane of wire chambers (Internal Picket Fence), which was added to improve neutral current event identification. For a total transverse momentum of the charged hadrons above 0.45 GeV/ c and a charged multiplicity of at least 3, it was found that R vp = 0.384 ± 0.015 and R vp = 0.338 ± 0.014 ± 0.016, corresponding to a value of sin 2 θ w (M w MS of 0.225 ± 0.030 . Combining the results from hydrogen and an isoscalar target, the differences of the neutral current chiral coupling constants were found to be u 2 l − d 2 L = −0.080 ± 0.043 ± 0.012 and u 2 R − d 2 R = 0.021±0.055±0.028.

1 data table

No description provided.