Electromagnetic Dissociation of 200-{GeV}/$N ^{16}$O and $^{32}$S Ions in Nuclear Emulsions

Baroni, G. ; Bisi, V. ; Breslin, A.C. ; et al.
Nucl.Phys.A 516 (1990) 673-714, 1990.
Inspire Record 294682 DOI 10.17182/hepdata.36830

This work represents the results of an experimental investigation of the electromagnetic dissociation of 200 GeV/nucleon 16 O and 32 S ions in nuclear emulsions. Exclusive channels involving charged fragments have been studied as a function of the energy released, and, assuming a Weizsäcker-Williams spectrum of virtual photons, there is a good agreement with results for the (γ, p) processes obtained with real photons. However, the rates found for other processes are larger, in particular for the (γ, α) on both nuclei. The values of the total integrated absorption cross sections are generally larger than those obtained from real photon experiments but the extent of the discrepancy depends strongly upon which photon results are used in the comparison.

6 data tables

ELECTROMAGNETIC DISSOCIATION IN NUCLEAR EMULSION.

ELECTROMAGNETIC DISSOCIATION IN NUCLEAR EMULSION.

NUCLEUS IS THE EMULSION.

More…

The Transverse Energy Distributions of $^{32}$S Nucleus Collisions at 200-{GeV} Per Nucleon

The HELIOS collaboration Akesson, T. ; Almehed, S. ; Angelis, A.L.S. ; et al.
Phys.Lett.B 214 (1988) 295-302, 1988.
Inspire Record 265090 DOI 10.17182/hepdata.29873

Transverse-energy distributions have been measured for the collisions of the 32 S nucleus with Al, Ag, W, Pt, Pb, and U target nuclei, at an incident energy of 200 GeV per nucleon. The shapes of these distribution reflect the geometry of the collisions, including the deformation effects. For central collisions, the transverse-energy production in the region −0.1< η lab <2.9 increases approximately as A 0.5 , where A is the atomic mass number of the target. This increase is accompanied by a relative depletion in the forward region η lab > 2.9. These results are compared with those obtained under similar conditions with incident 16 O nuclei. A comparison is also made with the predictions of a Monte Carlo generator based on the dual parton model. Finally, we give estimates of the energy density reached and its dependence on the atomic mass number of the projectile.

6 data tables

No description provided.

No description provided.

No description provided.

More…

The Transverse Energy Distribution in $^{16}$O - Nucleus Collisions at 60-{GeV} and 200-{GeV} Per Nucleon

The HELIOS collaboration Akesson, T. ; Almehed, S. ; Angelis, A.L.S. ; et al.
Z.Phys.C 38 (1988) 383, 1988.
Inspire Record 250767 DOI 10.17182/hepdata.15648

None

6 data tables

No description provided.

No description provided.

No description provided.

More…