Identification of nuclear effects in neutrino-carbon interactions at low three-momentum transfer

The MINERvA collaboration Rodrigues, P.A. ; Demgen, J. ; Miltenberger, E. ; et al.
Phys.Rev.Lett. 116 (2016) 071802, 2016.
Inspire Record 1405301 DOI 10.17182/hepdata.76976

Two different nuclear-medium effects are isolated using a low three-momentum transfer subsample of neutrino-carbon scattering data from the MINERvA neutrino experiment. The observed hadronic energy in charged-current $\nu_\mu$ interactions is combined with muon kinematics to permit separation of the quasielastic and $\Delta$(1232) resonance processes. First, we observe a small cross section at very low energy transfer that matches the expected screening effect of long-range nucleon correlations. Second, additions to the event rate in the kinematic region between the quasielastic and $\Delta$ resonance processes are needed to describe the data. The data in this kinematic region also has an enhanced population of multi-proton final states. Contributions predicted for scattering from a nucleon pair have both properties; the model tested in this analysis is a significant improvement but does not fully describe the data. We present the results as a double-differential cross section to enable further investigation of nuclear models. Improved description of the effects of the nuclear environment are required by current and future neutrino oscillation experiments.

2 data tables

The $\nu_\mu$ flux, in units 10$^{-5}$ / m$^{2}$ / P.O.T. / GeV.

Measured cross section per nucleon, in units 10$^{-42}$ cm$^2$ / GeV$^2$.


Total Cross-Sections for Charged Current Neutrino and anti-neutrino Interactions in BEBC in the Energy Range 20-GeV to 200-GeV

The Aachen-Bonn-CERN-London-Oxford-Saclay collaboration Bosetti, P.C. ; Deden, H. ; Deutschmann, M. ; et al.
Phys.Lett.B 70 (1977) 273, 1977.
Inspire Record 121301 DOI 10.17182/hepdata.27526

The charged-current cross sections for neutrinos and antineutrinos on nucleons in the energy range 20–200 GeV are given. Taken in conjunction with the previous Gargamelle results, they show that σ E is almost constant with energy for antineutrinos, and falls with energy for neutrinos. The value of 〈q 2 〉 E decreases with energy for both neutrinos and antineutrinos, and these deviations from exact Bjorken scaling are consistent with those observed in electron and muon inelastic scattering. We find no evidence for new heavy quark states with right-handed coupling.

2 data tables

Measured charged current total cross section.

Measured charged current total cross section.


CROSS-SECTIONS AND SCALING VARIABLE DISTRIBUTIONS OF NEUTRAL AND CHARGED CURRENT NEUTRINO NUCLEON INTERACTIONS FROM A LOW-ENERGY NARROW BAND BEAM

Baltay, C. ; French, H. ; Hibbs, M. ; et al.
Phys.Rev.Lett. 44 (1980) 916-919, 1980.
Inspire Record 157494 DOI 10.17182/hepdata.20725

This Letter compares neutral-current and charged-current scaling-variable distributions in neutrino-nucleon interactions induced by a narrow-band beam at Brookhaven National Laboratory; the x distribution of neutral-current events has been reported previously. The first measurement of flux-normalized neutrino cross sections from a narrow-band beam in the energy range Eν=3−9 GeV is also presented.

1 data table

Measured charged current total cross section.


Measurement of the Ratios of Neutral Current to Charged Current Cross-sections of Neutrino and Anti-neutrinos Interactions in Ne

The Aachen-Bonn-CERN-Democritos-London-Oxford-Saclay collaboration Bosetti, P.C. ; Fritze, P. ; Grassler, H. ; et al.
Nucl.Phys.B 217 (1983) 1-10, 1983.
Inspire Record 12766 DOI 10.17182/hepdata.33963

The ratios of neutral current to charged current cross sections of neutrino and antineutrino interactions in heavy Ne/H 2 mixture have been measured in BEBC. The beam was the CERN SPS 200 GeV/ c narrow band beam. The ratios were obtained using a cut in the transverse momentum of the hadronic system. In the standard Glashow-Salam-Weinberg model, our results correspond to the value of sin 2 θ w = 0.182 ± 0.020 ± 0.012. By combining this experiment with data from a hydrogen target the coupling constants u L 2 and L 2 are found to be 0.15 ± 0.04 and 0.19 ± 0.05, respectively.

2 data tables

No description provided.

No description provided.


Dimuon Production by Neutrinos in the {Fermilab} 15-ft. Bubble Chamber at the Tevatron

The E632 collaboration Jain, V. ; Harris, F.A. ; Aderholz, M. ; et al.
Phys.Rev.D 41 (1990) 2057, 1990.
Inspire Record 281906 DOI 10.17182/hepdata.22938

The Fermilab 15-ft bubble chamber has been exposed to a quadrupole triplet neutrino beam produced at the Tevatron. The ratio of ν to ν¯ in the beam is approximately 2.5. The mean event energy for ν-induced charged-current events is 150 GeV, and for ν¯-induced charged-current events it is 110 GeV. A total of 64 dimuon candidates (1 μ+μ+, 52 μ−μ+ and μ+μ−, and 11 μ−μ−) is observed in the data sample of approximately 13 300 charged-current events. The number and properties of the μ−μ− and μ+μ+ candidates are consistent with their being produced by background processes, the important sources being π and K decay and punchthrough. The 90%-C.L. upper limit for μ−μ−/μ− for muon momenta above 4 GeV/c is 1.2×10−3, and for momenta above 9 GeV/c this limit is 1.1×10−3. The opposite-sign-dimuon–to–single-muon ratio is (0.62±0.13)% for muon momenta above 4 GeV/c. There are eight neutral strange particles in the opposite-sign sample, leading to a rate per dimuon event of 0.65±0.29. The opposite-sign-dimuon sample is consistent with the hypothesis of charm production and decay.

4 data tables

No description provided.

No description provided.

No description provided.

More…

Total Cross-sections for $\nu_\mu$ and $\bar{\nu}_\mu$ Charged Current Interactions Between 20-{GeV} and 200-{GeV}

The Aachen-Bonn-CERN-Democritos-London-Oxford-Saclay collaboration Bosetti, P. ; Deden, H. ; Fritze, P. ; et al.
Phys.Lett.B 110 (1982) 167-172, 1982.
Inspire Record 169123 DOI 10.17182/hepdata.30976

Exposures of the Ne/H 2 filled Big European Bubble Chamber (BEBC) to a dichromatic neutrino (antineutrino) beam produced by 400 GeV protons of the CERN SPS yielded ∼ 3100 events with a negative, and ∼ 1100 with a positive, muon. The neutrino flux is determined from the muon flux in the shielding. Assuming a linear energy dependence of the cross section, the values σ E between 20 and 200 GeV are found to be 0.657 ± 0.012 (stat.) ± 0.027 (syst.) and 0.309 ± 0.009 (stat.) ± 0.013 (syst.) cm 2 (GeV nucleon) −1 , for neutrinos and antineutrinos, respectively. The scaling variable q 2 E decreases significantly with increasing energy both for neutrinos and antineutrinos.

3 data tables

Measured charged current total cross section.

Measured charged current total cross section.

No description provided.


Nucleon Structure Functions from High-Energy Neutrino Interactions with Iron and QCD Results

MacFarlane, D. ; Purohit, M.V. ; Messner, R.L. ; et al.
Z.Phys.C 26 (1984) 1-12, 1984.
Inspire Record 195928 DOI 10.17182/hepdata.16212

Nucleon structure functions obtained from neutrino and anti-neutrino scattering on iron nuclei at high energies (Ev=30 to 250 GeV) are presented. These results are compared with the results of other lepton-nucleon scattering experiments. The structure functions are used to test the validity of the Gross-Llewellyn-smith sum rule, which measures the number of valence quarks in the nucleons, and to obtain leading and second order QCD fits.

19 data tables

Measured charged current total cross section.

No description provided.

No description provided.

More…