Measurements of $\pi^\pm$, $K^\pm$, $K^0_S$, $\Lambda$ and proton production in proton-carbon interactions at 31 GeV/$c$ with the NA61/SHINE spectrometer at the CERN SPS

The NA61/SHINE collaboration Abgrall, N. ; Aduszkiewicz, A. ; Ali, Y. ; et al.
Eur.Phys.J.C 76 (2016) 84, 2016.
Inspire Record 1397003 DOI 10.17182/hepdata.19125

Measurements of hadron production in p+C interactions at 31 GeV/c are performed using the NA61/ SHINE spectrometer at the CERN SPS. The analysis is based on the full set of data collected in 2009 using a graphite target with a thickness of 4% of a nuclear interaction length. Inelastic and production cross sections as well as spectra of $\pi^\pm$, $K^\pm$, p, $K^0_S$ and $\Lambda$ are measured with high precision. These measurements are essential for improved calculations of the initial neutrino fluxes in the T2K long-baseline neutrino oscillation experiment in Japan. A comparison of the NA61/SHINE measurements with predictions of several hadroproduction models is presented.

62 data tables

The double differential $\pi^+$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.

The double differential $\pi^+$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.

The double differential $\pi^+$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.

More…

PARTICLE PRODUCTION IN THE TARGET RAPIDITY REGION FROM HADRON NUCLEUS REACTIONS AT SEVERAL GEV

Shibata, T.A. ; Nakai, K. ; Enyo, H. ; et al.
Nucl.Phys.A 408 (1983) 525-558, 1983.
Inspire Record 197272 DOI 10.17182/hepdata.8739

Highly inelastic processes in hadron-nucleus reactions at several GeV have been studied by measuring multi-particle emission in the target-rapidity region. Events with no leading particle(s) but with high multiplicities were observed up to 4 GeV. Proton spectra from such events were well reproduced with a single-moving-source model, which implied possible formation of a local source. The number of nucleons involved in the source was estimated to be (3–5)A 1 3 from the source velocity and the multiplicity of emitted protons. In those processes the incident energy flux seemed to be deposited totally or mostly (>62;75%) in the target nucleus to form the local source. The cross sections for the process were about 30% of the geometrical cross sections, with little dependence on incident energies up to 4 GeV and no dependence on projectiles (pions or protons). The E 0 parameter in the invariant-cross-section formula E d 3 σ /d p 3 = A exp (− E / E 0 ) for protons from the source increases with incident energy from 1 to 4 GeV/ c , but seems to saturate above 10 GeV at a value E 0 = 60–70 MeV. Three components in the emitted nucleon spectra were observed which would correspond to three stages of the reaction process: primary, pre-equilibrium and equilibrium.

72 data tables

BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.

BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.

BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.

More…