Proton - Deuteron Elastic Scattering at Small Momentum Transfer from 50-GeV/c to 400-GeV/c

Akimov, Y. ; Golovanov, L. ; Mukhin, S. ; et al.
Phys.Rev.D 12 (1975) 3399, 1975.
Inspire Record 99829 DOI 10.17182/hepdata.24883

Proton-deuteron elastic scattering has been measured in the four-momentum transfer squared region 0.013<|t|<0.14 (GeV/c)2 and for incident proton beam momenta from 50 to 400 GeV/c. The data can be fitted with the Bethe interference formula. We observe shrinkage of the diffraction cone with increasing energy equal to (0.94±0.04)ln(s1 GeV2) (GeV/c)−2. This shrinkage is greater than that observed in pp elastic scattering. The ratio of the elastic to the total cross section is approximately 0.1 and independent of energy above ∼ 150 GeV. In order to extract information on pn scattering we fit our data using the Glauber approach and a form factor which is the sum of exponentials. The values we obtain for the slope parameter in pn scattering are sensitive to the details of the inelastic double-scattering term.

11 data tables
More…

Proton - Deuteron Elastic Scattering From 20-{GeV} to 210-{GeV}

Warren, G. ; Gross, D. ; Olsen, S.L. ; et al.
Nucl.Phys.B 207 (1982) 365-373, 1982.
Inspire Record 11268 DOI 10.17182/hepdata.34079

Measurements of the differential cross section for proton-deuteron elastic scattering are reported for incident proton momenta ranging from 20 to 210 GeV and for invariant four-momentum transfers of 0.6 ≤ − t ≤ 3.0 GeV 2 . The results are in disagreement with a very simple Glauber double scattering model calculation.

1 data table

Axis error includes +- 5/5 contribution (ERROR IN RECONSTRUCTION EFFICIENCY AND ACCEPTANCE CALCULATION).


Proton-deuteron elastic scattering at 1.0 gev/c

Booth, N.E. ; Dolnick, C. ; Esterling, R.J. ; et al.
Phys.Rev.D 4 (1971) 1261-1267, 1971.
Inspire Record 74877 DOI 10.17182/hepdata.23150

The differential cross section and polarization in p−d elastic scattering have been measured at an incident laboratory momentum of 0.99 GeVc (kinetic energy 425 MeV) over most of the angular range. Elastic p−d scattering events from a CD2 target were selected by angular correlation, coplanarity, and time of flight. A significant feature of the results is the large positive polarization at backward scattering angles.

1 data table

No description provided.