Search for the direct production of charginos and neutralinos in $\sqrt{s} = $ 13 TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 78 (2018) 154, 2018.
Inspire Record 1620202 DOI 10.17182/hepdata.78377

A search for the direct production of charginos and neutralinos in final states with at least two hadronically decaying tau leptons is presented. The analysis uses a dataset of $pp$ collisions corresponding to an integrated luminosity of 36.1 fb$^{-1}$, recorded with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 13 TeV. No significant deviation from the Standard Model background expectation is observed. Limits are derived in scenarios of $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$ pair production and of $\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0}$ and $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$ production in simplified models where the neutralinos and charginos decay solely via intermediate left-handed staus and tau sneutrinos, and the mass of the $\tilde{\tau}_{\mathrm L}$ state is set to be halfway between the masses of the $\tilde{\chi}_{1}^{\pm}$ and the $\tilde{\chi}_{1}^{0}$. Chargino masses up to 630 GeV are excluded at 95% confidence level in the scenario of direct production of $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$ for a massless $\tilde{\chi}_{1}^{0}$. Common $\tilde{\chi}_{1}^{\pm}$, $\tilde{\chi}_{2}^{0}$ masses up to 760 GeV are excluded in the case of production of $\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0}$ and $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$ assuming a massless $\tilde{\chi}_{1}^{0}$. Exclusion limits for additional benchmark scenarios with large and small mass-splitting between the $\tilde{\chi}_{1}^{\pm}$ and the $\tilde{\chi}_{1}^{0}$ are also studied by varying the $\tilde{\tau}_{\mathrm L}$ mass between the masses of the $\tilde{\chi}_{1}^{\pm}$ and the $\tilde{\chi}_{1}^{0}$.

37 data tables

The $E_{\mathrm T}^{\mathrm{miss}}$ distribution in the $W$-CR region. The SM backgrounds other than multi-jet production are estimated from MC simulation. The contribution of $W$+jets events is scaled to the fit result. The multi-jet contribution is estimated from data using the OS-SS method. The hatched bands represent the combined statistical and systematic uncertainties of the total SM background. For illustration, the distributions of the SUSY reference points are also shown as dashed lines. The lower panels show the ratio of data to the SM background estimate. The last bin includes the overflow events.

The $m_{\mathrm{T2}}$ distribution in the $W$-CR region. The SM backgrounds other than multi-jet production are estimated from MC simulation. The contribution of $W$+jets events is scaled to the fit result. The multi-jet contribution is estimated from data using the OS-SS method. The hatched bands represent the combined statistical and systematic uncertainties of the total SM background. For illustration, the distributions of the SUSY reference points are also shown as dashed lines. The lower panels show the ratio of data to the SM background estimate. The last bin includes the overflow events.

The $E_{\mathrm T}^{\mathrm{miss}}$ distribution in the multi-jet background VR-F for SR-lowMass. The stacked histograms show the contribution of the non-multi-jet SM backgrounds from MC simulation. The multi-jet contribution is estimated from data using the ABCD method. The hatched bands represent the combined statistical and systematic uncertainties in the sum of the SM backgrounds shown. For illustration, the distributions of the SUSY reference points are also shown as dashed lines. The last bin in the left panels includes the overflow events.

More…