Strong Energy Dependence of the Analyzing Power in the $p p \to d \pi^+$ Reaction and the Question of an Isovector Dibaryon Resonance. 2.

Bertini, R. ; Roy, G. ; Durand, J.M. ; et al.
Phys.Lett.B 203 (1988) 18-21, 1988.
Inspire Record 247925 DOI 10.17182/hepdata.29981

Forward angular distributions of the analysing power for the pp→d π + reaction have been measured at six energies T p =1.2, 1.4, 1.6, 1.8, 2.0, 2.3 GeV. A strong energy dependence is observed for A y 0 ( t =0) and A y 0 ( θ CM π =90°). The data are compared with the backward angular distributions previously published and suggest the existence of a resonant state in the pp system at the approximate energy of 2.7 GeV.

6 data tables

No description provided.

No description provided.

No description provided.

More…

Total and differential cross-sections of p + p ---> pi+ + d reactions down to 275-keV above threshold

The GEM collaboration Drochner, M. ; Ernst, J. ; Fortsch, S ; et al.
Phys.Rev.Lett. 77 (1996) 454-457, 1996.
Inspire Record 431032 DOI 10.17182/hepdata.19580

The p+p→π++d reaction is studied at excess energies between 0.275 and 3.86 MeV. Differential and total cross section were measured employing a magnetic spectrometer with nearly 4π acceptance in the center of mass system. The measured anisotropies between 0.008 and 0.29 indicate that the p wave is not negligible even so close to threshold. The data are compared to other data offering no evidence for charge symmetry breaking or time reversal violation. The s-wave and p-wave contributions at threshold are deduced.

1 data table

The CONST is p-wave contribution to the cross section. The differential cross section is fitted usig the relations 4*pi*D(SIG)/D(OMEGA) = SIG + CONST*P2(COS(THETA)), where P2 denotes the Legendre polynomial.